
SNP: Structured Neuron-level Pruning to
Preserve Attention Scores

Kyunghwan Shim1 , Jaewoong Yun1 , and Shinkook Choi1⋆

1 Nota Inc., Korea
2 {kyunghwan.shim,jwyun,shinkook.choi}@nota.ai

Abstract. Multi-head self-attention (MSA) is a key component of Vi-
sion Transformers (ViTs), which have achieved great success in various vi-
sion tasks. However, their high computational cost and memory footprint
hinder their deployment on resource-constrained devices. Conventional
pruning approaches can only compress and accelerate the MSA module
using head pruning, although the head is not an atomic unit. To address
this issue, we propose a novel graph-aware neuron-level pruning method,
Structured Neuron-level Pruning (SNP). SNP prunes neurons with less
informative attention scores and eliminates redundancy among heads.
Specifically, it prunes graphically connected query and key layers having
the least informative attention scores while preserving the overall atten-
tion scores. Value layers, which can be pruned independently, are pruned
to eliminate inter-head redundancy. Our proposed method effectively
compresses and accelerates Transformer-based models for both edge de-
vices and server processors. For instance, the DeiT-Small with SNP runs
3.1 times faster than the original model and achieves performance that is
21.94% faster and 1.12% higher than the DeiT-Tiny. Additionally, SNP
accelerates the efficiently designed Transformer model, EfficientFormer,
by 1.74 times on the Jetson Nano with acceptable performance degrada-
tion. Source code is at https://github.com/Nota-NetsPresso/SNP

Keywords: Network pruning · Network compression · Compact models

1 Introduction

Vision Transformers (ViTs) [7,17,24] have outperformed or matched the perfor-
mance of state-ofthe-art convolutional neural networks (CNNs) [10,22,23,28] on
various computer vision tasks. The success of ViTs is attributed to the Multi-
head Self-Attention (MSA) module, which captures intricate relationships in
data. However, the Transformer architecture entails substantial computational
resources, posing challenges for practical applications on edge devices with con-
strained storage and computational capabilities. To address this issue, we lever-
age the graphical components of the MSA module to reduce the dimension of
interconnected layers, aimed at effectively reducing their computing budgets
while achieving hardware-agnostic speedups.
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Fig. 1: Comparison of model size, speed, and performance. ImageNet-1K clas-
sification results. Latency is profiled by Rasbperry Pi 4B. The connected lines represent
the compressed models paired with the original model. The size of each circle indicates
the number of parameters in respective model. The number adjacent to each com-
pressed model indicates its compressed FLOPs.

From the perspective of structured pruning, which aims to reduce the num-
ber of dimensions in convolutional or linear layers, the MSA module contains
two prunable objectives: heads and neurons. Head pruning, which removes the
number of heads, is relatively intuitive to implement due to the reduced com-
plexity of graphical elements compared to neuron-level pruning. In contrast,
neuron-level pruning reduces the dimension of individual layers in each head of
the MSA module, necessitating a comprehensive understanding of the graphical
connectivity of the MSA module. A recent work [31] implements neuron-level
pruning by zeroing out individual filters without considering the model’s graphi-
cal connectivity. This indiscriminate zeroing can negatively affect both accuracy
and throughput performance [26].

In this paper, we introduce a novel graph-aware neuron-level pruning method
called Structured Neuron-level Pruning (SNP) to accelerate and compress ViTs
effectively. We propose two pruning criteria based on the function of each layer
within the MSA module. SNP prunes filter pairs of query and key layers con-
taining fewer contributions to attention scores. Moreover, SNP aims to reduce
redundancy across heads by eliminating the redundant filter from the value layer.

Furthermore, by removing identical filter indices for all the graphically con-
nected layers, SNP could accelerate various Transformer models on various de-
vices without additional libraries, as shown in Fig. 1.

In summary, the major contributions of this paper are:
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– We propose a novel graph-aware neuron-level pruning method, SNP, for
Transformer models. SNP is the first method to use the graphical char-
acteristics of the MSA module to measure the importance score of neurons.

– To the best of our knowledge, this is the first work to accelerate Transformer
models on any device using neuron-level pruning only.

– SNP achieves significant acceleration while maintaining the original perfor-
mance on several models. Compressed DeiT-Small outperforms DeiT-Tiny
by 1.12% in accuracy, with similar FLOPs, and reduces inference time on
various edge devices. Furthermore, the proposed method accelerates the ef-
ficiently designed Transformer model, EfficientFormer [16], more than two
times with acceptable performance degradation.

2 Related Work

2.1 Compressing vision Transformers

The ViTs [7, 17, 24] achieve high performance in numerous vision tasks with-
out specialized image processing modules such as convolutions. The key concept
of ViTs is to segment images into patch sequences, convert these patches to to-
ken embeddings, and then process them through Transformer encoders [25]. ViTs
consist only of Transformer blocks, making them likely to be over-parameterized.
For this reason, recent works have aimed to reduce computational cost [3,24] and
be memory efficient [18, 26]. DeiT [24] proposes lightweight ViT architectures
through knowledge distillation [13]. ToMe [3] proposes accelerating ViTs by di-
rectly combining similar tokens, without the need for training. Liu et al . [18]
propose post-training quantization method using nuclear norm based mixed-
precision scheme that does not require fine-tuning for the Vision Transformer.

2.2 Pruning vision Transformers

Unstructured and structured pruning Pruning methods can be broadly
categorized into two types, unstructured and structured pruning. Unstructured
pruning sets individual weights or parameters to zero, resulting in irregular
sparse matrices [9, 14]. Compressed models using unstructured pruning tend to
maintain relatively high performance for a given pruning ratio. However, they
necessitate additional libraries, such as cuSPARSE [5], Automatic SParsity [20],
or SparseDNN [27] to accelerate sparse matrix computations.

Structured pruning, on the other hand, involves the removal of entire groups
of units, such as filters or attention heads. This can be implemented using “mask-
ing" (zeroing out) [11, 12, 32, 33], or by “pruning" [8, 15]. Structured pruning by
masking [11, 12, 32, 33] simply sets the group of units to zero, which requires
additional libraries to accelerate the model, as unstructured pruning. “Prun-
ing" [8, 15], on the other hand, requires a comprehensive understanding of the
network’s graphical connectivity, including element-wise operations that enforce
the same input shape. By considering the graphical connectivity and pruning
identical filter indices for inter-connected layers, structured pruning can achieve
acceleration on any devices.
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Fig. 2: Proposed SNP methods, on each prunable component of the Trans-
former block. (a) SNP for query and key layers to preserve attention scores. (b)
prunable components of the Transformer block. (c) SNP for value and other layers,
including FFN and patch embedding. (d) conventional zeroing out in the matrix multi-
plication operator. (e) conventional zeroing out and graph-aware pruning in the resid-
ual connection.

Head and neuron-level pruning Structured pruning for the MSA module
has two pruning objectives: head and neuron. Head pruning [29,30] reduces the
number of heads, while neuron-level pruning [31] reduces the dimension of each
query, key, and value layer in each head. Recent studies for pruning ViTs have
focused on head pruning. X-Pruner [30] proposes a novel head pruning method
for ViTs that introduces explainability-aware masks and measure the head im-
portance, resulting in superior model compression. WDPruning [29] propose a
method to control the number of attention heads and blocks via threshold on
learnable parameters.

UVC [31] utilizes knowledge distillation alongside several pruning techniques,
such as head pruning, block pruning, and neuron-level pruning. However, neuron-
level pruning of UVC is carried out in a masking (zeroing out) manner, convert-
ing the weight matrix into a sparse matrix. For this reason, UVC necessitates
additional libraries or hardware for accelerating sparse matrices, otherwise, the
compressed model with UVC cannot achieve latency gain from the neuron-level
pruning.

3 Methodology

3.1 Preliminaries

MSA module takes a single input X ∈ RN×d, where N denotes the input vector
length, and d represents the hidden size. It comprises H heads, each consisting
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of three linear layers: query, key, and value. Each layer denoted as Wh
{q,k,v} ∈

Rd×d{q,k,v} , where h represents h-th head and d{q,k,v} indicates the hidden size
of each query, key, and value layer. {Q,K, V }h signifies the output of each query,
key, and value layer in h-th head, with a shape of RN×d{q,k,v} .

The self-attention operation for h-th head can be expressed as follows:

Ash(X) = Qh · (Kh)T (1)

Atth(X) = Softmax(
Ash(X)√

dq
) · V h (2)

MSA(X) = Concat(Att1(X), ...,AttH(X)) (3)

here, As, Att, and MSA represent the functions to calculate attention scores,
attention module, and MSA module respectively.

Matrix multiplication, unlike a residual connection, yields zero when either
of the inputs is masked, regardless of the value of the other input. Therefore, ap-
plying a conventional zeroing-out approach to neuron-level pruning in the MSA
module can lead to unintended results, as shown in Fig. 2 (d). To address this
issue, we introduce two graph-aware neuron-level pruning criteria to compress
and expedite the MSA module.

3.2 Preserving attention scores

Attention scores, Eq. (1), of the MSA module learn long-range dependencies be-
tween image features by focusing on different parts of the image when processing
different features. These attention scores can be recognized as a series of outer
product of Qh

i and (Kh
i )

T as follows:

Ash(X) = Qh · (Kh)T

=

dq∑
i=1

Qh
i · (Kh

i )
T

(4)

from this perspective, neuron-level pruning, reducing the dimension of query dq
and key dk, inevitably distorts the attention scores. For this reason, preserving
attention scores is essential to maintain the high performance of the original
model.

To alleviate the distortion, we maintain the graphically connected query-key
filter pair (Qh

i and Kh
i ), constituting a filter-by-attention score (Qh

i · (Kh
i )

T ∈
RN×N ), that retains the most significant aspects of the overall attention scores.
To identify the most informative filter pair, we initially employ singular value
decomposition (SVD) to decompose the original model’s attention scores.

Ash(X) = Ũ · S̃ · Ṽ T

=

N∑
j=1

σ̃j · ũj · ṽTj
(5)
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where Ũ and Ṽ are the left and right singular vector matrices, respectively, and
S̃ is the diagonal matrix of singular values, with σ̃1 ≥ σ̃2 ≥ ... ≥ σ̃N .

SVD is a technique for extracting the most informative components of a
matrix, those with large singular values, while discarding the less informative
components, those with small singular values. To retain the spatial relationships
captured by the attention mechanism, we prune the filter pair Qh

i and Kh
i with

least correlation with the most informative components of the attention scores.
To measure the correlation, we adopt the cosine similarity between the at-

tention scores of the i-th filter and the j-th rank matrix, as normalizing the at-
tention scores reduces the impact of magnitude-based approaches. Consequently,
the importance score ωh

as,i is defined as follows:

ωh
as,i =

r∑
j=1

|cos((Qh
i · (Kh

i )
T ), (σ̃j · ũj · ṽTj ))|

=

r∑
j=1

|
(Qh

i · (Kh
i )

T ) · (σ̃j · ũj · ṽTj )
||(Qh

i · (Kh
i )

T )|| · ||(σ̃j · ũj · ṽTj )||
|

(6)

where r is a hyperparameter dictating the quantity of ranks, within the range of
1 ≤ r ≤ N , to be compared with the i-th attention scores, while the remaining
N − r singular values (σ̃r+1, ..., σ̃N ) are discarded.

Optimizing r for each attention module can contribute to preserving informa-
tive filters and sustaining higher performance. For this reason, we adopt Vari-
ational Bayesian Matrix Factorization (VBMF) [21] to determine the optimal
rank r for the attention scores. VBMF inherently addresses the challenge of de-
termining the number of latent factors (ranks) in matrix factorization using its
probabilistic approach.

Importance score ωh
as,i, defined in Eq. (6), represents the importance of the

i-th filter for both query and key layers. A larger ωh
as,i indicates that the filter has

a greater impact on the main component of the attention scores, while a lower
ωh
as,i indicates that the filter is less important and can be removed without

significantly affecting the attention scores.

3.3 Inter-head redundancy removal

In the preceding section, we outlined the approach to preserving attention scores
even with reduced embedding dimensions in the query and key layers. Here, we
introduce a pruning method for the value and other layers, such as FFN or patch
embedding layer.

Previous works [2,19] have revealed that a significant proportion of attention
heads can be removed without causing significant performance deterioration. To
remove this inter-head redundancy through neuron-level pruning, we propose to
measure the distance between all the value layers of MSA module, irrespective
of the heads. The importance score ωh

v,i of the i-th filter in the value layer of the
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h-th head is as follows:

ωh
v,i =

H∑
j=1

dv∑
l=1

(1− |cos(Wh
i ,W

j
l )|) (7)

The importance score of the value layer, denoted as ωh
v,i, indicates the redun-

dancy of filter i in the value layer compared to all value layers of the heads within
the corresponding MSA layer. Consequently, filters with the lowest importance
scores will be pruned in the initial stages of the pruning process.

3.4 Accelerating Transformers

As described in Sec. 3.2, SNP removes the least correlated filter pairs (Qh
i ,K

h
i )

to preserve attention scores and enhance the efficiency of the MSA module across
various devices.

Most MSA modules, including MSA modules in DeiTs, are designed to com-
pute all heads in parallel. For achieving this parallel computation, SNP ensures
that the number of filter dimensions are consistent across heads, even though
the filter indices for each head are independently selected.

The green highlighted boxes in Fig. 2 (b) represent layers connected by a
single residual connection at the last add layer of the Transformer block. Un-
like the matrix multiplication operator, the output of the residual connection
becomes zero when all the interconnected layers return zero for specific filter
indices. For this reason, the residual connection with masking always exceeds
the performance of actual pruning, which restricts the set of possible pruning
patterns [26].

To accelerate the residual connection layers, all interconnected layers should
be pruned identically. To achieve this, we sum up all the calculated importance
scores for interconnected layers based on their filter indices, as shown in Fig. 2
(e). Subsequently, we prune the least important filter indices of all the connected
layers.

4 Experimental Results

To ensure a fair comparison with existing methods, we apply SNP to prune the
DeiT [24] architectures trained on the ImageNet-1K [6] dataset. Additionally,
we conduct experiments on the efficient Transformer model, EfficientFormer-L1,
to confirm the robustness of SNP. Furthermore, a series of ablation studies are
conducted to gain a comprehensive understanding of our methodology.

4.1 Implementation details

The overall pruning and fine-tuning process are executed on the pre-trained
DeiT3 and EfficientFormer-L14 released from the official implementation on
3 https://github.com/facebookresearch/deit
4 https://github.com/snap-research/EfficientFormer
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Table 1: Performance comparison of various pruning methods on ImageNet-
1K. The “Pruning" column represents the pruning methods that corresponding meth-
ods use to compress the MSA module. Each of the methods contains one of follows: head
pruning (HP), block pruning (BP), neuron-level pruning (NP), neuron-level sparsity
(NS).

Model Method Pruning Top-1 (%) Top-5 (%) GFLOPs Params (M)

DeiT-T

Original [24] - 72.20 91.10 1.3 5.7
SSViTE [4] HP 70.12 - 0.9 4.2

WDPruning [29] HP+BP 70.34 89.82 0.7 3.5
X-Pruner [30] HP 71.10 90.11 0.6 -

SNP NP 70.29 90.01 0.6 3.0
UVC [31] HP+NS+BP 70.60 - 0.5 -

DeiT-S

Original [24] - 79.85 95.00 4.6 22.1
SSViTE [4] HP 79.22 - 3.1 14.6

WDPruning [29] HP+BP 78.38 94.05 2.6 13.3
X-Pruner [30] HP 78.93 94.24 2.4 -

UVC [31] HP+NS+BP 78.82 - 2.3 -
SNP NP 78.52 94.37 2.0 10.0
SNP NP 73.32 91.66 1.3 6.4

DeiT-B

Original [24] - 81.80 95.59 17.6 86.6
SSViTE [4] HP 82.22 - 11.8 56.8

WDPruning [29] HP+BP 80.76 95.36 9.9 55.3
X-Pruner [30] HP 81.02 95.38 8.5 -

UVC [31] HP+NS+BP 80.57 - 8.0 -
SNP NP 79.63 94.37 6.4 31.6

ImageNet-1K. Throughout the fine-tuning phase of the pruned model, we main-
tain consistent settings across all models, except for the batch size and learning
rate. The batch size is set to 256, and to prevent weight explosion, we adjust the
learning rate of the compressed model to 1/10 or 1/100 of the original model.

To evaluate the reduced latency using SNP, we have configured four testing
scenarios: one on a CPU and another on GPU for both edge devices and server
processors. We employ a standard PyTorch model for profiling on the server
processors (Intel Xeon Silver 4210R and NVIDIA GeForce RTX 3090). Profiling
on the Raspberry Pi 4B and Jetson Nano is conducted using the ONNX and
TensorRT formats, respectively. All latencies are measured using a single image
as an input, except for the GPU of the server processor (RTX 3090), where it is
set to 64 images.

4.2 Quantitative results

Comparison with other methods Despite the constraints outlined in Sec. 3.4,
SNP not only maintains accuracy comparable to existing methods but also sig-
nificantly reduces inference time across diverse hardware and data types on the
ImageNet-1K dataset, as shown in Tab. 1 and Tab. 2.
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Table 2: Inference speed and Top-1 accuracy of the compressed model across
different devices. Performance evaluation involves accuracy on ImageNet-1K and in-
ference time for the compressed DeiTs and EfficientFormer-L1. Latency is benchmarked
with 200 warm-up runs and averaged over 1000 runs. In latency measurement, a single
image is used as an input, except for the RTX 3090, where 64 images are employed in
a single batch.

Model Top-1 (%) GFLOPs Edge devices (ms) Server processors (ms)

Raspberry Pi 4B (.onnx) Jetson Nano (.trt) Xeon Silver 4210R (.pt) RTX 3090 (.pt)
DeiT-Tiny 72.20 1.3 139.13 41.03 34.74 18.65

+ SNP (Ours) 70.29 0.6 81.63 (1.70×) 26.67 (1.54×) 25.25 (1.38×) 17.82 (1.05×)
DeiT-Small 79.80 4.6 401.27 99.32 53.37 46.13

+ SNP (Ours) 78.52 2.0 199.15 (2.01×) 45.51 (2.18×) 38.57 (1.38×) 32.91 (1.40×)
+ SNP (Ours) 73.32 1.3 136.68 (2.94×) 32.03 (3.10×) 33.46 (1.60×) 26.98 (1.71×)

DeiT-Base 81.80 17.6 1377.71 293.29 122.03 151.35
+ SNP (Ours) 79.63 6.4 565.68 (2.44×) 132.55 (2.21×) 64.65 (1.89×) 72.96 (2.07×)

EfficientFormer-L1 79.20 1.3 169.13 30.95 43.75 26.19
+ SNP (Ours) 75.53 0.6 95.12 (1.78×) 19.78 (1.56×) 38.25 (1.14×) 17.24 (1.52×)
+ SNP (Ours) 74.51 0.5 82.60 (2.05×) 17.76 (1.74×) 35.15 (1.24×) 16.01 (1.64×)

In a recent study [26], unconstrained masking generally outperforms post-
training accuracy of pruned models by an average of 2.1% on ImageNet-1K.
Compared to unconstrained head masking approaches like SSVITE [4] and X-
Pruner [30], SNP achieves significantly higher compression rates for all DeiTs
FLOPs (30.64% and 10.64%) with minimal performance degradation (0.83%
and 0.87%), much less than the 2.1% average mentioned.

Furthermore, compared to other pruning approaches like WDPruning [29]
and UVC [31], which use a combination of pruning techniques to compress DeiTs,
SNP achieves comparable accuracy solely through neuron-level pruning. Notably,
DeiT-Small with SNP outperforms WDPruning by 0.14%, with the removal of
3.3 million parameters and a reduction of 0.6 GFLOPs. Compared to UVC, SNP
exhibits negligible performance degradation, averaging 0.51% across all DeiTs
while using 7.65% fewer FLOPs.

Large compressed vs. Small hand-crafted DeiT-Small with SNP, a large
pruned model, outperforms the smaller, hand-crafted DeiT-Tiny in both ac-
curacy and latency, achieving a notable 1.12% improvement in top-1 accuracy
while maintaining similar FLOPs. Additionally, DeiT-Small with SNP exhibits
enhanced speed compared to the original DeiT-Tiny across edge devices and
CPU-based server processors. Notably, its speed increases up to 21.94% com-
pared to the original DeiT-Tiny running on Jetson Nano, a GPU-based edge
device. This substantial performance gap underscores the superiority of the com-
pressed model (DeiT-Small with SNP) over the smaller hand-crafted designed
model (DeiT-Tiny) in both overall performance and speed.

Accelerating Transformer-based models As depicted in Tab. 2, SNP
achieves impressive acceleration of DeiTs by a factor of 1.44× to 2.44× on edge
devices and 1.05× to 2.07× on server processors. This acceleration is notable,
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Fig. 3: Attention maps with varying pruning criteria and compression ra-
tios. All query and key layers are locally pruned based on the specified pruning ratio
without fine-tuning. The importance scores of l2-norm and GM on query and key lay-
ers are combined by filter index and pruned simultaneously. “Reverse" represents the
reverse order of SNP.

with negligible average performance degradation of 1.79%, specifically 1.91%,
1.28%, and 2.17% for DeiT-Tiny, DeiT-Small, and DeiT-Base, respectively.

Compared to WDPruning, which employs both head and block pruning, SNP
surpasses in terms of latency for DeiT-Small and DeiT-Base on the RTX 3090
GPU. SNP accelerates the original DeiTs by 1.38× and 2.07×, respectively, while
WDPruning achieves a comparatively modest acceleration of 1.18× for both
models.

The superiority of SNP becomes more evident when the target of neuron-
level pruning, linear or convolutional layers, contribute a larger proportion of the
original model’s computation time. we find that SNP further accelerates original
model 1.05× to 2.07× as the DeiT model’s size grows on the RTX 3090 GPU.
In contrast, WDPruning, involving the removal of entire layers and associated
operators in both head and block, consistently shows acceleration rates of 1.18×.

To ascertain the robustness of SNP across diverse Transformer models, espe-
cially on the efficiently designed model, we conduct additional experiments on
EfficientFormer-L1. SNP accelerates the model by 1.78× and 2.05× faster on
Raspberry Pi 4B and 1.56× and 1.74× faster on Jetson Nano. Notably, the com-
pressed EfficientFormer-L1 achieves acceptable accuracy of 75.53% and 74.51%.
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Fig. 4: Attention maps from the original, compressed, and fine-tuned DeiT-
Tiny with SNP. The attention maps in the first row are visualized using the attention
rollout [1]. Each red box contains three attention maps from each head of the MSA
module, ordered accordingly.

4.3 Qualitative results

In the subsequent sections, attention rollout [1] is employed to randomly selected
images from the test datasets to visualize the attention maps of the DeiTs and
assess the efficacy of SNP. This evaluation unfolds across two key facets:

– Preserving the attention scores: Visualize attention maps to verify the
effectiveness of the proposed importance score in preserving attention scores.

– Restoring the attention scores after SNP: Visualize attention maps to
find the effectiveness of SNP in restoring attention scores.

Preserving the attention scores To visualize SNP effectiveness, we apply
four pruning criteria to compress the query and key filter pairs in all MSA mod-
ules of DeiT-Tiny: SNP, l2-norm, geometric median (GM) [11], and “Reverse".

The “Reverse" criterion prioritizes pruning the most important filter pairs
first, keeping the least important pairs until the end. However, both l2-norm and
GM pruning criteria ignore the MSA module’s graphical connectivity, evaluating
importance scores independently for query and key layers. To handle identical
filter indices during pruning, we aggregate scores based on filter indices, removing
the least important indices from both layers.

In Fig. 3, attention maps for the original DeiT-Tiny and locally pruned mod-
els are presented across various pruning ratios (10% to 90% with 10% intervals).
Our proposed method effectively maintains the original attention map even af-
ter pruning over 80% of the filters, whereas other methods show fragmented
attention maps at much lower pruning ratios (typically 30% or less). These re-
sults highlight the potential of our neuron-level pruning criteria, utilizing SVD
to preserve attention scores, in reducing the size and speeding up the execution
of MSA modules without compromising accuracy.
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Table 3: Performance of SNP without fine-tuning across different data quan-
tities at various pruning ratios. To determine the proper number of images for
calculating the importance score, we conduct local pruning on the query and key lay-
ers at pruning ratios of 10%, 30%, 50%, 70%, and 90%. All performance metrics are
assessed without fine-tuning. The latency is measured on Raspberry Pi 4B.

Number of images Performance by pruning ratio

Original 10% 30% 50% 70% 90%
1 72.20 71.15 67.96 57.60 38.68 11.17
4 72.20 70.82 67.86 57.65 38.05 11.86
16 72.20 70.72 67.42 58.60 39.46 9.11
64 72.20 70.83 67.55 59.50 42.13 12.83
256 72.20 70.75 68.14 59.58 42.70 14.48

Latency (ms) 139.13 133.60 129.29 119.41 117.48 112.32
Params (M) 5.7 5.59 5.41 5.23 5.06 4.88

Restoring the attention scores after SNP Fig. 4 illustrates the overall and
per-head attention maps of the original, compressed, and fine-tuned DeiT-Tiny,
respectively. The first row shows the overall attention maps of the respective
models. Notably, the compressed model maintains a well-preserved overall at-
tention map, despite pruning all layers, including values and FFN, resulting in
a 53% reduction in FLOPs and a 46% reduction in parameters. Especially, we
can observe that attention map is well-restored after the fine-tuning process.

The twelve red boxes below the overall attention map depict per-head atten-
tion maps for twelve layers of each original, compressed, and fine-tuned models
respectively. As shown in Fig. 4, it is evident that the attention maps for each
head are effectively preserved and restored in each of the compressed and fine-
tuned models.

4.4 Ablation studies

Importance scores by the data quantity Since the attention scores depend
on the input, as indicated in Eq. (1), the proposed importance scores for query
and key filter pairs (Eq. (6)) may exhibit sensitivity to the distribution of the
input image X. To validate the method’s robustness, we compute importance
scores using various image quantities, pruning query and key layers at different
ratios, without fine-tuning process.

As depicted in Tab. 3, SNP demonstrates a slight advantage in preserving
performance with an increasing number of images, outperforming models com-
pressed with fewer images as the compression ratio rises. However, this improve-
ment comes at the cost of increased computation time for SNP calculations.
Considering these factors into account, we opt to use 64 images, which yield
the second-best performance among the given number of images. This decision
strikes a balance between achieving satisfactory performance and maintaining
computational efficiency.
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Fig. 5: Top-1 accuracy of compressed DeiT-Tiny on ImageNet using several
pruning criteria without fine-tuning. Query and key layers are locally pruned
using various pruning criteria : SNP, GM, l2-norm, reverse order of SNP (“Reverse"),
and original DeiT-Tiny (“Baseline").

Performance comparison across pruning ratios To assess the robustness
of SNP, we examine the performance of DeiT-Tiny under various pruning criteria
and different pruning ratios, as described in Sec. 4.3.

As illustrated in Fig. 5, SNP consistently outperforms other pruning criteria
across all pruning ratios. In contrast, models compressed with “Reverse" criteria
exhibit the lowest performance at all pruning ratios, underscoring the robustness
of the proposed approach.

Both Fig. 3 and Fig. 5 confirm that SNP successfully preserves attention
scores in both quantitative and qualitative aspects. Even with an 80% prun-
ing ratio and without fine-tuning, SNP maintains original attention scores and
outperforms other pruning criteria.

5 Conclusion

In this paper, we propose a novel graph-aware neuron-level pruning method,
SNP, designed to compress and accelerate Transformer-based models. SNP pro-
poses two pruning criteria for preserving attention scores and eliminating inter-
head redundancy. Using SNP, a large compressed model outperforms small,
hand-crafted designed models in both performance and latency on edge devices.
Moreover, the compressed models exhibit astonishing results in latency on vari-
ous devices, with negligible performance degradation.

As this work is a first attempt to accelerate MSA modules using neuron-
level pruning alone, many challenges remain. One is incorporating other pruning
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methods such as head or block pruning for a more efficient Transformer model.
Another challenge is applying SNP to other vision tasks, including image gener-
ation, which requires high computational costs on both training and inference.

We believe that these works encourage the adoption of model pruning as a
tool, for both improving the applicability of ViTs in resource-constrained envi-
ronments and reducing the training costs of large models by integrating with
training process.
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