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Abstract. We introduce a simple yet effective approach for separating
transmitted and reflected light. Our key insight is that the powerful novel
view synthesis capabilities provided by modern inverse rendering meth-
ods (e.g., 3D Gaussian splatting) allow one to perform flash/no-flash
reflection separation using unpaired measurements—this relaxation dra-
matically simplifies image acquisition over conventional paired flash/no-
flash reflection separation methods. Through extensive real-world experi-
ments, we demonstrate our method, Flash-Splat, accurately reconstructs
both transmitted and reflected scenes in 3D. Our method outperforms
existing 3D reflection separation methods, which do not leverage illumi-
nation control, by a large margin.

1 Introduction

We are often surrounded by scenes with transparent surfaces, most notably glass,
which introduce specular reflections. When viewing such scenes, we see a super-
imposition of transmitted and reflected light. This work focuses on the unsuper-
vised separation of a transmitted 3D scene and a reflected 3D scene.

Reflection removal and separation have received considerable attention in the
computational photography community. In addition to enhancing image quality
and appeal, effective reflection separation methods can improve the robustness
of downstream computer vision systems used in various applications, including
robot navigation, classification, and 3D surface reconstruction. Separating trans-
mitted and reflected 3D scenes is vital for various virtual reality tasks, such as
3D object extraction or editing.

Unfortunately, separating transmitted and reflected light from the sum of
their intensities is a highly under-determined problem. To address this challenge,
prior works have relied on various assumptions to perform single-image reflection
removal. For instance, they have assumed the reflection is out-of-focus [2,56] or
there is a noticeable double reflection caused by two sides of the glass [42]. How-
ever, these assumptions are not always true in real life. Other works have lever-
aged videos or multi-view images for reflection removal [1, 11, 12, 15, 16, 33, 54].
Their advantages over single-image methods are (1) they can get “lucky” where
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Fig. 1: Left: We separate the 3D transmitted and reflected scenes by capturing some
views with camera flash and some views with no flash. Right: Our proposed
Flash-Splat method achieves much better separation than the state-of-the-art
unsupervised 3D separation method NeRFReN [13].

some views have weaker reflections than others, and (2) they can utilize multi-
view consistency to regularize the separation. However, these methods still strug-
gle to overcome the fundamental ill-posed problem, especially under strong re-
flection. For example, in Figure 1 the state-of-the-art unsupervised 3D reflection
separation method, NeRFReN [13], fails to separate reflected and transmitted
light from a collection of images captured under similar illumination conditions.

Introducing illumination control, i.e., flash/no-flash photography [24,52,53],
can make the reflection separation problem significantly easier. Intuitively, the
camera flash increases the intensities of the transmitted scene while leaving the
reflected scene largely intact. Therefore, we can recover a reflection-free transmis-
sion scene by comparing images captured with and without flash. The core limita-
tion is that it requires paired (tightly-aligned) flash/no-flash image captures—the
camera cannot move between the captures. This paired measurement require-
ment represents a major barrier to effective in-the-wild reflection separation.

In this paper, we perform flash-based reflection separation without paired
measurements by leveraging the powerful novel view synthesis capabilities of
recently developed inverse differentiable rendering methods. Specifically, dur-
ing acquisition, a user captures roughly half of the views with flash on and the
other half with flash off. Then, by extending the powerful Gaussian Splatting [20]
technique, we can construct 2D “pseudo-paired” flash/no-flash images, where one
image in the pseudo flash/no-flash pair is captured, and the other one is syn-
thesized with our 3D inverse rendering framework; we can also construct a 3D
“pseudo-pair” of flash/no-flash 3D representations, where one 3D representation
is reconstructed from only the flash images, and the other is reconstructed from
only the no-flash images. The difference between the 2D pseudo-pair and the
difference between the 3D pseudo-pair both serve as strong priors for the trans-
mitted 3D scene, which significantly reduce the ill-posedness of the separation
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problem. As a byproduct of our 3D inverse differentiable rendering framework,
our method, Flash-Splat, is also capable of performing novel view synthesis and
depth estimation for each transmitted and reflected scene. We validate our pro-
posed approach in real-world experiments and demonstrate its state-of-the-art
performance.

Our contributions are:

– We propose a robust strategy, Flash-Splat, for 3D transmission-reflection
separation and scene reconstruction, using flash illumination as a physical
cue without requiring paired flash/no-flash captures.

– We introduce novel modifications to make 3D Gaussian Splatting illumination-
aware, enhancing the quality of each separated 3D scene.

– We show that Flash-Splat excels in separating reflection and transmission,
even when baseline methods fail, over real-world scenes.

– We demonstrate that Flash-Splat can perform high-quality novel view syn-
thesis and depth estimation for both the transmitted and reflected 3D scenes.

2 Related work

Reflection removal. Existing reflection removal methods can generally be
divided into three categories: single-frame, multi-frame and polarization-based.
Single-frame approaches [2,7,8,14,17–19,21,26–29,31,32,42,44–47,50,51,55–58,
60] only take a single image and remove the reflection. Multi-frame approaches [1,
6,9,11,12,15,16,31,33,54] use multiple input frames as cue and produce multi-
view consistent results. Polarization-based approaches [22,23,25,30,34,37] lever-
age the fact that the transmission is unpolarized while the reflection component
varies when rotating the polarization filter. However, none of those methods aim
to recover a 3D representation of the transmitted or the reflected scene.

3D neural scene representations. To get more accurate 3D reconstruction
for decomposition, we consider differentiable 3D neural representations. Neural
Radiance Fields (NeRFs) [4,5,10,36] has received vast attentions in the past few
years, for their accurate and consistent novel view synthesis results. Another
line of works focuses on accurate 3D geometry, so they considers Signed Dis-
tance Function (SDF) [48,49] for better surface accuracy. Recently, 3D Gaussian
Splatting (3DGS) [20,59] emerges for its fast training and inference speed.

Reflection removal by inverse rendering. Previous methods consider solv-
ing reflection removal using inverse 3D rendering. ReflectionsIBR [43] as a pi-
oneer proposes to separate each frame into a transmission and reflection layer
combined with a binary reflection mask, and tries to reconstruct the scene using
an image-based rendering. Recently, NeRFReN [13] uses a NeRF to achieve bet-
ter 3D reconstruction accuracy. NeuS-HSR [38], instead of focusing on reflection
separation, uses Signed Distance Functions to achieve better surface reconstruc-
tion quality. Distinct from these 3D methods, our proposed method dramatically
extends these approaches by incorporating variable illumination.
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Fig. 2: Flash/No-Flash For Re�ection Removal . The di�erence between paired
�ash and no-�ash images is equivalent to taking a photo with �ash in a dark
environment, which gives us a re�ection-free image (top). This is because �ash
increases the transmission brightness, but not the re�ection brightness. Notice pairs
must be tightly aligned for this method to work. Even tiny vibrations such as
pressing the shutter button even when using a tripod produce artifacts (bottom).

3 Method

3.1 Paired 2D Flash/No-Flash

Capturing a pair of �ash and no-�ash images of a scene from the same camera
viewpoint allows one to reconstruct a re�ection-free image.

Re�ections exist because ambient light illuminates objects in the re�ected
scene and re�ects o� the glass onto the camera sensor. The captured composite
scene with no �ash I N can be modeled as

I N = T N + � � R (1)

where T N is the transmission scene with no �ash,R is the re�ection scene and
� is the re�ective fraction factor (in the extreme case where the re�ection is
caused by a mirror, then� could be interpreted as the mask of the mirror in the
scene). Now consider the case where the scene is captured with a �ash co-located
on the camera. If we assume that the scene behind glass is di�use and that the
camera �ash is uniform, the camera �ash will increase the intensity of all pixels
proportionally. Therefore, we can formulate the �ash image I F as following:

I F = (1 + � )T N + ( � + � F ) � R ; (2)

where � and � F represent the intensity increase of the transmitted and re�ected
scene due to �ash, respectively. Assuming the direct re�ection of the �ash is
outside the camera's �eld of view (i.e., the specular surface is not orthogonal
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to the camera view), the �ash will have little e�ect on the brightness of the
re�ected scene. In common cases like glass, the impact of secondary re�ections
is also usually very low. Therefore, we may approximate� F as close to zero,

I F � (1 + � )T N + � � R : (3)

As such, one technique used among photographers is subtracting a no-�ash image
I N [24] from a �ash image I F ,

I F � I N � � T N : (4)

The di�erence is e�ectively a re�ection-free transmitted scene scaled by some
constant. Figure 2 demonstrates the impressive performance of this simple method.

Unfortunately, this process only works when we capturepaired �ash and no-
�ash images at the samelocation and orientation. Any small movement between
the image pair causes the approach to break down. As illustrated in the bottom
row of Figure 2, even with a tripod, the slight motion caused by touching the
exposure button (as opposed to using remote triggering) can introduce signi�cant
errors in the conventional �ash/no-�ash re�ection separation process.

3.2 Unpaired 3D Flash/No-Flash

In this work, we extend the �ash/no-�ash idea to 3D and thus remove the re-
quirement of capturing paired images, which makes �ash-based re�ection removal
signi�cantly easier and more practical. Instead of directly capturing paired
multi-view images of a scene, we propose to �rst capture an arbitrary sequence
of multi-view �ash images of the scene, and then capture another sequence of
multi-view no-�ash images of the scene. These two sequences should be captured
such that they approximately cover a similar range of perspectives.

Our 3D Flash/No-�ash formulation is de�ned as follows. Following previous
notations, we consider four 3D representations in total: transmission with �ash
T F , transmission without �ash T N , re�ection R , and the re�ective fraction
factor � . To render a target pixel in a captured image, we blend the overlapping
regions of the transmitted and re�ected scenes. We then have,

I N = T N + � � R

I F = T F + � � R
(5)

for �ash ( F ) images and no-�ash (N ) images. Even though we are only capturing
unpaired �ash/no-�ash views now, we can still associate them by creating 2 types
of �pseudo-pairs� to aid re�ection separation.

Firstly, we can construct 2D �pseudo-pairs� via novel view synthesis of the
missing �ash/no-�ash counterpart, as shown in Figure 3a. Consider a speci�c
view where only the �ash image is taken. Utilizing inverse rendering techniques,
we are able to synthesize a no-�ash image at this exact same view by using the
no-�ash images taken at neighboring views. This synthesized no-�ash image and
the captured �ash image form a 2D pseudo-pair. The di�erence image between
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Fig. 3: Our Intuition: Construct 2D and 3D �pseudo-pairs� as Cues for
Re�ection Removal. Flash-Splat does not require paired �ash/no-�ash data.
During the data capture stage, we collect unpaired �ash/no-�ash images from
di�erent views. In (a), if we captured a no-�ash image at View 2, we can learn a 3D
representation of the captured �ash images at other views, and then synthesize a
novel view of the �ash image at View 2. As such, we have created a 2D pseudo-pair
of �ash and no-�ash images at View 2. If we then take the di�erence between the
pseudo-pair as in Figure 2, we get the transmission component of View 2 that is free
of re�ection. In (b), we reconstruct a 3D scene with �ash using only the �ash images
(top); we also reconstruct a 3D scene without �ash using only the no-�ash images
(bottom). As such, we have created a 3D pseudo-pair of �ash/no-�ash scenes.

this 2D pseudo-pair should be re�ection-free, just like the di�erence between the
2D paired �ash/no-�ash images, as indicated in Equation (4).

Secondly, we can construct a3D �pseudo-pair� by elevating the problem to
the 3D space, as shown in Figure 3b. More speci�cally, we can reconstruct a 3D
scene with �ash and another without �ash, using only the views captured with
�ash and only the views captured without �ash, respectively. We name these
two reconstructed scenes asI Rec

F and I Rec
N , to di�erentiate them with the ground

truth 3D �ash/no-�ash scenes I F and I N . I Rec
F and I Rec

N form a 3D pseudo-pair,
as they are the same scene except that the transmitted part ofI Rec

F is brighter
due to the �ash. A 3D pseudo-pair di�erence can be used as a cue for the
transmitted scene. Nevertheless, asI Rec

F and I Rec
N are separately reconstructed

from 2 unpaired sets of data, they will be misaligned, thus the word �pseudo�.
As such, we obtain important ��ash cues� from the 2D and 3D pseudo-pairs,

and use them as the high-level intuitions for our proposed method.

3.3 Proposed Pipeline for 3D Re�ection Separation

In this subsection, we �rst explain how to incorporate �ash cues to guide our
reconstruction, then describe our overall optimization framework, and �nally
discuss how to adapt the loss functions to accommodate the RAW input images.

Regularizing Re�ection Separation using Flash Cues. While our high-
level intuition is to construct pseudo-pairs as cues for re�ection-free images,
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in this work, we want to reconstruct both the transmitted scene and the re-
�ected scene. Therefore, we do not explicitly calculate the di�erence between
the pseudo-pairs, but rather, use it as a regularization term to guide separation
optimization. As shown in Equation (3), T F is expressed asT N multiplied by
a scalar (1 + � ), which enforces a linear relationship between them. Therefore,
we choose to enforce the linearity betweenT F and T N , which is equivalent to
enforcing the constraint that the �ash/no-�ash di�erence is re�ection-free.

While in the ideal case,T F and T N should form a strictly linear relationship,
in reality, the camera �ash might not be perfectly uniform; there is also a chance
the secondary re�ection of the �ash does hit the camera sensor. As a result,
this relationship between T F and T N should be close to linear, but might not
perfectly linear. Therefore, we chose not to use this hard constraint, but use the
Pearson Coe�cient, which measures the linearity betweenT F and T N :

L linearity = �
cov(T N ; T F )

p
var (T N ) var (T F )

(6)

By minimizing this loss term, we encourage the 3D Gaussians to learn a re�ection-
free transmission, therefore reducing the ill-posedness of the separation.

Notably, while the analysis above holds true for both the 3D pseudo-pair (see
Figure 3b) and the 2D pseudo-pairs (see Figure 3a), we only apply this linearity
regularization to the 2D pseudo-pairs, as it is more straightforward to measure
the linearity of images than 3D representations.

Initializing 3D Representations Using Flash Cues. Now we show how to
utilize the 3D pseudo-pair to aid re�ection separation. As illustrated in Figure 2b,
the 3D pseudo-pair, namelyI Rec

F and I Rec
N , are 3D representations of the target

scene reconstructed from the �ash views and no-�ash views, respectively. Their
di�erence should be the re�ection-free 3D transmitted scene. However, given the
highly ill-posed nature of the 3D scene reconstruction problem, it is very likely
that the contents in I Rec

F and I Rec
N do not correspond with each other. As such,

this di�erence between I Rec
F and I Rec

N should be viewed as a very rough estimate
of the transmitted scene. Therefore, we decide to only use it to initialize the 3D
representationsT F , T N , R , and � for better convergence.

We use 3DGS [20] as the 3D representation architecture, which is normally
initialized from sparse point clouds. We �rst use structure from motion, e.g., [41],
to obtain the sparse point clouds of the 3D pseudo-pairI Rec

F and I Rec
N . Then we

roughly align them via linear transformation to compensate for the di�erence
in the camera coordinate systems. Afterwards, we compare these two sets of
point clouds: for points in regions with increased intensities, we classify them as
�transmitted points�; for points in regions with unchanged intensities, we classify
them as �re�ected points�. Finally, we initialize the 3DGSs for T F , T N , and �
from the �transmitted points�, and the 3DGS for R from the �re�ected points�.

Note that this way of initialization relies on the 3D representation's compati-
bility with point clouds. It does not work with implicit neural 3D representations
like NeRF [36]. When using NeRF as our 3D representations, we just randomly
initialize the neural network and only rely on the previously discussed linearity
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Fig. 4: Method Overview. We use 4 3DGSs [20] as our 3D representations for the
transmitted scene with �ash T F , the transmitted scene with no �ash T N , the
re�ected scene R and the re�ective fraction map � . Based on the Flash/No-�ash
technique, R and � are shared between the �ash image and the no-�ash image, while
the relationship of T F and T N is close to linear. We initialize these 4 3DGSs using
cues from the 3D pseudo-pair (see Figure 3b and Section 3.3). In each iteration of
optimization, our method operates on a single view. This �gure, for instance, shows a
view where we captured a �ash image. There is NO no-�ash image captured at this
view. As shown in the top row, we use T F , R , and � to render a �ash image of this
particular view and calculate losses with the captured ground truth �ash image.
Additionally, based on the cues from 2D pseudo-pairs, we calculate the Pearson
linearity loss between T F and T N to encourage the linearity between them (see
Figure 3a and Section 3.3). We then back-propagate the gradients and update the
weights of the 4 3DGSs.

regularization using 2D pseudo-pairs, which would still achieve better re�ection
removal performance than baselines, as will be shown in Section 6.

Overall Optimization Framework. As shown in Figure 4, in each iteration
of optimization, Flash-Splat operates on a single view. If we captured a �ash
image at this view (meaning that NO no-�ash image was captured at this view),
we follow Equation (5) and use our 3D representationsT F , R , and � to render a
�ash image at this same view. Then we calculate the loss between the rendered
�ash image and the captured ground truth �ash image (more on this in the next
paragraph). Additionally, we also calculate the Pearson linearity loss between
images rendered fromT F and T N at this view (the 2D pseudo-pair). We then
back-propagate the gradients and update the weights of the4 3D representations
T F , T N , R , and � . In the next iteration, we perform similar computations with
�ash and no-�ash swapped. By doing such alternative optimization, we are using
the loss with the captured ground truth images to supervise the novel view


