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Abstract. Existing 2D-to-3D pose lifting networks suffer from poor per-
formance in cross-dataset benchmarks. Although 2D keypoints joined by
“stick-figure” limbs is the dominant trend, stick-figures do not preserve
occlusion information that is inherent in an image, resulting in significant
ambiguities that are ruled out when occlusion information is present. In
addition, datasets with ground truth 3D poses are much harder to obtain
in contrast to similar human annotated 2D datasets. To address these
issues, we propose to replace stick figures with abstract images—figures
with opaque limbs that preserve occlusion information while implicitly
encoding joint locations. We then break down the pose estimation task
into two stages: (1) Generating an abstract image from a real image, and
(2) garnering the pose from the abstract image. Crucially, given the GT
3D keypoints for a particular pose, we can synthesize an arbitrary number
of abstract images of the same pose as seen from arbitrary cameras, even
without a part map. Given a set of 3D GT keypoints, this allows train-
ing of Stage (2) on an unlimited dataset without over-training, which
in turn allows us to correctly interpret poses from arbitrary viewpoints
not included in the original dataset. Additionally, our unlimited train-
ing of Stage 2 allows good generalizations across datasets, demonstrated
through a significant improvement in cross-dataset benchmarks, while
still showing competitive performance in same-dataset benchmark.

Keywords: 3D Human Pose Estimation · Cross-Dataset Generalization · View-
point Encoding

1 Introduction

Recent work on 3D human pose estimation from still images can be classified
into two main groups: direct-from-image methods [17, 18, 26, 27, 32, 33, 47], and
methods that use intermediate 2D/2.5D keypoints [4,5,7,10,11,16,20,42,45,50].
Keypointing has resulted in a number of methods that “lift” the 3D pose from the
intermediate 2D keypoints and their associated “stick-figure” limbs (cf. Fig. 1).

Unfortunately, stick figures are “see-through”—they do not preserve occlusion
information that is clearly visible in real images [26,46]. This introduces myriad
problems, for example failing to correctly distinguish left-from-right viewpoints
when limbs from opposite sides overlap (Figs. 1a and 1b). Current methods also
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(a) Left view (sitting) (b) Left view (yoga) (c) Front view

Fig. 1: Poses that are indistinguishable without occlusion. Crucially, this implies that
the “stick-figure”-to-pose mapping is, mathematically, not a 1-to-1 function.

perform poorly across datasets [10, 39] because they depend on both camera
viewing angle, and z-score normalization [16,23,30,32,36,37,45,50], which likely
changes the prior between datasets. Solving these problems requires us to (1)
estimate the viewpoint accurately, (2) avoid discarding occlusion information,
and (3) avoid camera-dependent metrics derived from the training set.

To simultaneously solve all of these problems, we propose training on syn-
thetic “abstract” images of real human poses viewed from a virtually unlimited
number of viewpoints. We address the viewpoint bias (Fig. 1) with a novel encod-
ing that creates a mathematical 1-to-1 mapping between the camera viewpoint
and the input image; a similar 1-to-1 encoding defines the pose. Both encodings
support fully-convolutional training. As depicted in Fig. 2, our method uses the
abstract image as input to two networks: one for viewpoint, and another for
pose. At inference time, we (1) generate the abstract image from a real image,
and (2) take the predicted viewpoint and pose from the abstract image to re-
construct the 3D pose. Since reconstruction does not ensure the correct forward
facing direction of the subject, the ground-truth target pose will be related to
the reconstructed pose by a simple rotation to compare with other methods.

A key observation is that the camera viewpoint as seen from the subject, and
the subject’s observed pose as seen from the camera, are independent: although
they are intimately tied together in the sense that both are needed to fully recon-
struct an abstract image —and thus a pose— they answer completely separate
questions. More explicitly: (1) the location of the camera as viewed from the
subject is completely independent of the subject’s pose; and (2) the pose of the
subject is completely independent of where the camera is located.

The “abstract-to-pose" part of our method (Stage 2) decomposes 3D human
pose recognition into the above two orthogonal components: (1) the camera’s
location in subject-centered coordinates, and (2) the observed pose of the subject
in camera coordinates. Note that identical three-dimensional poses from different
viewpoints will change both answers, but combining the answers should always
allow us to reconstruct the same subject-centered pose.

This, then, is our “secret sauce”: by incorporating occlusion information, we
can independently train two fully convolutional systems: one that learns a 1-to-1
mapping between images and the subject-centered camera viewpoint, and an-
other that learns a 1-to-1 mapping between images and camera-centered pose.
The final ingredient is to train these two CNN’s using a virtually unlimited
set of abstract images, with occlusion, generated from randomly chosen camera
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Fig. 2: Overview Dashed arrows indicate our custom supervision targets: limb occlu-
sion matrix, viewpoint heatmap, 3D pose heatmap, and abstract images. Stage 1 has
two phases: first, the “image-to-abstract" network optimizes a binary cross-entropy loss
for the limb occlusion matrix and MSE loss for the 2D keypoint heatmaps; the second
draws the abstract image with limb occlusion matrix as a z-buffer and 2D keypoints
as the core structure. Stage 2: generate abstract images (both flat and cube variants)
from a random viewpoint and 3D pose pairs using the synthetic environment. The
viewpoint and pose heatmaps—generated by the synthetic environment—are used as
supervision targets for the abstract to viewpoint and pose networks. The “abstract to
pose and viewpoint” network optimize the L2 loss on the output of viewpoint and pose
network. The Reconstruction stage takes viewpoint and pose heatmaps from Stage
2, using a random synthetic environment to reconstruct the 3D pose.

viewpoints observing the ground-truth 3D joint locations of real humans in real
poses. Given a sufficiently large (synthetic) dataset of abstract images, we are
able to independently train two CNNs that reliably encode the two 1-to-1 map-
pings. After the above CNNs are trained, the last ingredient we need for a true
image-to-pose is a method to create an abstract image from a real input im-
age. We outline our “image-to-abstract” method in Secs. 3.2 and 4 which shows
competitive performance indicating adaptibility in real-world scenario.

The key contributions of our paper are:

1. We replace “stick figures” with abstract images as the intermediate repre-
sentation between images and poses. We represent limbs as opaque, solid,
rectangular blocks that preserve occlusion and part-mapping. Using 2D/3D
GT keypoints, we can generate synthetic abstract images from an unlimited
number of camera viewpoints.

2. Novel viewpoint and pose encoding schemes, which facilitate learning a 1-
to-1 mapping with input while preserving a spherical prior; and

3. We significantly improve state-of-the-art performance in cross-dataset bench-
mark without relying on dataset dependent normalization, and only marginal
effects on same-dataset performance.
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2 Related Work

3D Pose Estimation generally involves regression [4,7,10,16,20,23,42,45,50]
ending with a fully-connected layer, or a voxel-based approach [24,26,27,46] with
fully-convolutional supervision, the latter with a target space of size w×h×d×N ,
where w is the width, h height, d depth, and N is the number of joints. How-
ever, position regression requires a training-set-dependent normalization (e.g .
z-score) [16,23,30,32,36,37,45,50]. Both the graph convolution based approach
[7, 20, 42, 45, 50] and hypothesis generation approach [16, 30, 37] rely on z-score
normalization to improve same-, and most crucially, cross- dataset performance.
To address missing depth information, Pavlakos et al . [26] include ordinal re-
lations in training; Zhou et al . [46] use a heatmap triplet-based intermediate
representation per part.

Part Based Approach Kundu et al . [15] applies an unsupervised part-guided
approach to 3D pose estimation. From an image, they generate part-segmentation
with the help of intermediate 3D pose and a 2D part dictionary.

Viewpoint Viewpoint estimation generally boils down to regressing some form
of (θ, ϕ) [8], rotation matrix [35, 49], or quaternions [39]. Regardless of the ap-
proach, everyone agrees on viewpoint estimation relative to the subject. However,
relative subject rotation makes it harder to estimate viewpoint accurately.

Relation to previous work We train on synthetically-generated abstract im-
ages of ground-truth 3D human poses. The abstract image contains opaque limbs
that are uniquely color-coded (implicitly defining a part-map). We believe the
abstract image contains the minimum information required to completely de-
scribe a human pose. Opaque 3D humanoid limbs have been used previously; for
example their 3D bodies have been ray-traced as a means of determining occlu-
sion [6]; but so far as we know such opaque limbs have never been used to train a
CNN directly to estimate 3D pose, nor to augment image datasets by transform-
ing 3D GT keypoints into an unlimited number of synthetic viewpoints (both
used to aid training our Stage 2). Our own early tests showed that regression
on 3D joint positions performs extremely badly across datasets when the same
z-score parameters are used for both training and test sets, and improves only
marginally if the normalization parameters are independently computed for both
training and test sets (which is infeasible in the field, but is reported in Tab. 3
below). Conversely, voxel regression [27] presents a trade-off in performance vs.
memory footprint as voxel resolution is increased. Our pose encoding (1) does
not require training set dependent normalization, (2) takes much less memory
than a voxel-based representation, and (3) being heatmap-based, it integrates
well in a fully-convolutional setup. Finally, most methods encode the viewpoint
using a rotation matrix, sine and cosines, or quaternions; all of these methods
suffer from a discontinuous mapping at 2π. In contrast, our method avoids dis-
continuities by mapping both pose and viewpoint heatmaps to a cylinder that
wraps around at 2π.



Human Pose Recognition via Occlusion-Preserving Abstract Images 5

(a) Synthetic Env. (b) Cube Abstract (c) Limb Generation (d) Torso Generation

Fig. 3: (a) Synthetic environment setup: Cameras are arranged spherically, all pointing
to f (magenta dot near the center). (b) Blue-coloring the left forearm and femur
allows easy identification of the subject’s front—in contrast to “stick figures” that omit
occlusion information, introducing ambiguity in determining the subject’s “front”. (c)
Limb generation from a vector; (d) Torso generation from right and forward vectors.

3 Method

3.1 Synthetic Environment

The environment we use to generate an unlimited supply of synthetic abstract
images from any given pose consists of a room full of cameras all pointing to
the same fixed point at the center of the room. We define T ∈ RX×Y×3, the
translation/position of the cameras in X columns and Y rows. As shown in
Fig. 3a, the fixed point is defined as, f = c

XY

∑
T, where the constant c < 0.5

defines the desired height of the “center”; each camera is related to the room via
a rotation matrix, R ∈ RX×Y×3×3. We compute the look vector as lij = f −Tij

for camera (i, j) and take a cross-product with −ẑ as the up vector to compute
the right vector r, all of which are fine-tuned to satisfy orthonormality by a
series of cross-products. Refer to Sec. 4, for predefined values.

3.2 Abstract Shape Representation

Our abstract shapes come in two variants: Cube and Flat. Using a mixture of
both helps the network learn the underlying pose structure without overfitting.
We show later that the flat variant is easy to obtain from images. To ensure that
occlusion information is clear in both variants, our robot’s 8 limbs and torso use
9 easily-distinguishable, high-contrast colors (Fig. 3b).
The Cube Variant has 3D limbs and torso formed by cuboids with orthogonal
edges formed via appropriate cross-products; limbs (Fig. 3c) have a long axis
(a to b) along the bone with a square cross-section, while the torso (Fig. 3d)
is longest along the spine and has a rectangular cross-section. While the limb
cuboid is generated from a single vector (a to b), the torso is generated by a body-
centered coordinate system [39] (see Supplementary for details). All endpoints
are compiled into a matrix X3D ∈ R3×N , where N is the number of vertices.
We project these points to X2D ∈ R2×N using the focal length fcam and camera
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(a) Naïve (b) Rotation invariant (c) Seam Lines
(d) Wrapped Gaussian
heatmap

Fig. 4: (a) Naïve approach of encoding viewpoint. As can be seen, for a rotated subject,
we have same image but different viewpoint encoding. (b) Rotation invariant approach
makes sure we have the same encoding if the image is same even if the subject is rotated.
(c) Seam lines after computing cosine distances. Camera indices (black=0, white=63),
rotate with subject. Seam line A (red) is the original starting point of the indices.
Seam line B (purple) is the new starting point consistent with subject’s rotation. (d)
A Gaussian heatmap warped horizontally.

center ccam (predefined for a synthetic room). Using the QHull algorithm [2], we
compute the convex hull of the projected 2D points for each limb. We compute
the Euclidean distance between each part’s midpoint and the camera. Next, we
iterate over the parts in order of longest distance, extract the polygon from
hull points, and assign limb colors. While obtaining the 3D variant this way, we
obtain a binary limb occlusion matrix for l limbs, L ∈ Zl×l, where each entry
(u, v) determines whether limb u is occluding limb v if there is polygonal overlap
above certain threshold.
The Flat Variant utilizes the limb occlusion matrix L and 2D keypoints X2D

to render the abstract image. L is used to topologically sort the order to render
the limbs farthest to nearest. The limbs in this variant can be easily obtained
by rendering a rectangle with the 2D endpoints forming a principal axis. If the
rectangle area is small —for example if the torso is sideways or a limb points
directly at the camera— we inflate to make the limbs more visible. We follow
a similar approach while rendering the torso with four endpoints (two hips and
two shoulders). The detailed algorithm is presented in the supplementary.

3.3 Viewpoint Encoding

Fig. 4a shows a naive encoding of azimuth (θ) and elevation (ϕ), which can
result in two viewpoints generating the same image—a serious problem because
not even a neural network can circumvent the fact that the viewpoint and pose
problems must be 1-to-1 mappings with the input image—i.e., mathematically
injective. Our solution preserves the 1-to-1 nature of poses to images (cf. Fig. 5b).

The matrix representation of our cylindrical coordinates wrap around at the
seam line; crucially, we arrange for the viewpoint seam to always lie behind the
subject (Fig. 4c), which ensures the coordinates on the matrix always stay in a
fixed point related to the subject’s orientation.

Formally, we compute the cosine distance between the subject’s forward vec-
tor Fs projected onto xy-plane of the room Fsp, and camera’s forward vector
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Fc and place the seam line (index 0 and 63 of the matrix) directly behind the
subject. Fig. 4b reflects the improvement from Fig. 4a. Note for the same input,
we have same viewpoint encoding now.

To learn a spherical mapping, we have to make the network understand
the spherical positioning of the cameras. In general, a normal heatmap-based
regression will clip the Gaussian at the border of the matrix. On the contrary,
we allow the Gaussian heatmaps in the matrix to wrap around at the boundaries
— corresponding to the seam line. Our Gaussian is

G(x, y, µx, µy) = exp−
(x−µx)2+(y−µy)2

2σ2 . (1)

The associated heatmap is

Hv[i, j] =


G(j, i, µx, µy), if |µx − j| < Wk,

G(j − Iw, i, µx, µy), if |j − Iw − µx| < Wk,

G(j + Iw, i, µx, µy), if |µx − Iw − j| < Wk,

(2)

where (µx, µy) is the index of the viewpoint in our rotated synthetic room, Iw
is the image size, and Wk = 2σ+1 is the kernel width, with σ = 1. Algorithm 1
is used to rotate the camera indices in the synthetic room to ensure the camera
position is consistent with the subject. This encodes the camera position in
subject space and addition of Gaussian heatmap relaxes the area for network to
optimize on (i.e. picking an almost approximate neighboring camera).

3.4 Pose Encoding

We decompose the pose into bone vectors Br, and bone lengths Br, both relative
to parent joint. Let the synthetic environment’s selected camera rotation matrix
be Rij , and Brij = Rij

′Br be the bone vectors in Rij ’s coordinate space. Then,
we normalize the spherical angles (θ, ϕ) of Brij from range [−2π, 2π] to range

Algorithm 1: Rotate Camera Array
Data: Se (Synthetic Environment), Fs (Subject Forward Vector)
Result: T′, R′

1 Fc ← Se.camera_forwards;
2 Fsp ← Fs − (Fs · ẑ)ẑ;
3 D← Fc · Fsp;
4 S ← argmax D;
5 I ← Se.original_index_array;
6 Ir ← rotate_index_array(I, S);
7 T← Se.camera_position;
8 R← Se.camera_rotation;
9 T′ ← T[Ir];

10 R′ ← R[Ir];
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(a) Input image (b) Predicted viewpoint (c) Predicted pose (d) Ground truth pose

Fig. 5: A sample output from our network. (a) is the abstract image (cube variant)
fed into the network. (b) the predicted viewpoint heatmap. (c) is the reconstructed
pose from the pose and viewpoint heatmaps. The arrow shooting out the pose’s left
indicates the camera was left of the subject. (d) is the ground-truth 3D pose which
is the reconstructed pose related with a rotation and the visible difference is due to
camera viewpoint, not actual pose, which has error 37 mm.

[0, 127]. Note that this encoding is not dependent on any normalization of the
training—and by implication, is also independent of any normalization of the
test set. We now have (θ, ϕ) normalized on a 128 × 128 grid. We take a simi-
lar approach to viewpoint encoding and allow the Gaussian heatmap generated
around the matrix locations to wrap around at the boundaries. Note that in the
viewpoint encoding, we only need to account for horizontal wrapping, whereas
in pose we wrap both coordinates. For joint i and k1, k2 ∈ [−Wk

2 , Wk

2 ),

Hp
i [h, g] = G(k1, k2, 0, 0) (3)

where h = µy + k2(mod Iw) and g = µy + k1(mod Iw). Thus, we have another
heatmap-based encoding for the pose. This encoding Hp ∈ R128×128×N , where
N is the number of joints. Fig. 4d shows a wrapped version of the heatmap.

3.5 Pose Reconstruction in Stage 2

Since the camera viewpoint is encoded in a subject-based coordinate system,
the first step of pose reconstruction is to transform the camera’s position from
subject-centered coordinates to world coordinates.The mathematical details are
in the Supplementary, but the upshot is shown in Fig. 5, which shows the un-
seen test output from our actual network. Specifically, in Fig. 5c, note how the
reconstructed pose is rotated from the ground-truth pose in Fig. 5d. The arrow
shooting out from the subject’s left in Fig. 5c, indicates the relative position of
the camera when the picture was taken.

4 Implementation

We calculated average bone lengths for the H36M training set [13]. The viewpoint
was discretized into 24× 64 indices, encoded to occupy rows [21, 45] of a 64× 64
heatmap matrix, giving angular resolution 5.625◦. Our synthetic environment
uses fixed point scalar (cf. Sec. 3.1) of 0.4, with radius 5569 mm. (In principle, we
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could easily include cameras covering the entire sphere, for example to account
for images of astronauts floating in the ISS viewed from any angle.) The pose was
normalized to fall into the range [0, 128] to occupy a 13×128×128 matrix, with
13 being the number of limbs since we have 14 joints. For simplicity, we followed
similar network architecture for all of the networks. We always use HRNet [31]
pretrained on MPII [1], and COCO [19] for feature extraction.

The “image-to-abstract” network outputs 2D keypoint heatmaps and a binary
limb occlusion matrix of dimension 9 × 9. We keep the original architecture
for the 2D pose prediction and add a separate branch with a series of three
interleaved convolution and batch normalization block with kernel size 3× 3 to
reduce the resolution. The reduced output is flattened and passed through two
fully connected blocks to output the limb occlusion matrix as an 81D vector. We
optimized the mean squared error loss on the 2D heatmaps and binary cross-
entropy loss for the limb occlusion matrix.

The pose network consists two Convolution and Batch Normalization block
pairs, followed by a transposed Convolution to match the output size of 128×128.
All the convolution blocks use a 3 × 3 kernel with padding and stride set to
1. The final transposed convolution uses stride 2 and outputs a 13 × 128 ×
128 size tensor. For viewpoint estimation, we apply only one Convolution and
Batch Normalization pair on the output of HRNet. The final stage is a regular
convolution block that shrinks the output channel to 1 and outputs a 1×64×64
size tensor. Since our target is a heatmap, we applied the standard L2 loss.

All training used batch size 64, with Adam [14] as our optimizer using Cosine
Annealing with warm restart [21] and a learning rate warming from 1 × 10−9

to 1 × 10−3. The viewpoint network ran for 200 epochs (2 days), and the pose
network ran for 300 epochs (4 days), both on an RTX 3090, though it was stopped
early due to convergence. When training the “abstract to pose and viewpoint”
network, on every epoch we pick a random set of camera indices and render
an abstract image from one of the two variants with equal probability. Thus,
no two epochs are the same. This randomness minimizes overfitting—in turn
helping with generalization—though it results in longer time-to-convergence.

5 Experiments

After we explain the datasets, metrics and models used in Sec. 5.1, we first show
the results from our method under same dataset benchmark in Sec. 5.2. Then,
we shift our focus to generalization capability across datasets in Sec. 5.3. We also
report qualitative results in Sec. 5.4 and reflect on other experiments in Sec. 5.5.

5.1 Datasets, Metrics and Models

Datasets We train our HRNet backbone framework on both MPII [1] and
COCO [19] first one 2D keypoint prediction task. For the rest of the task, we
only train on Human3.6M dataset [13]. We report cross-dataset results on the
test sets of Geometric Pose Affordance Dataset (GPA) [38], 3D Poses in the Wild
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Dataset [22], and SURREAL Dataset [34] dataset. For the details of the dataset
please refer to [39].
Evaluation Metrics We report Mean Per Joint Position Error (MPJPE) in
millimeters, which we call Protocol #1 and MPJPE after Procrustes Alignment
(PA-MPJPE) as Protocol #2, following convention. Since the reconstructed pose
is related with the ground truth by rotation only, we report it under Protocol
#1. Further, PA-MPJPE reduces the error since the reconstruction uses preset
bone-lengths. This becomes important in cross-dataset benchmarks.
Models First, we train our “abstract-to-pose" network with a uniform mixture of
Cube and Flat variant of the abstract images, which we will refer to as “Model
(Hybrid)” . We also trained the same network for fewer epochs on the Cube
variant separately which we will refer to as “Model (Cube)” . The former is
tuned to handle both the flat and cube variant of the abstract image. Since we
get the “Flat Abstract Image” from the real world image through the Stage 1
of our approach, the hybrid model can reconstruct the pose from this input.
However, the Flat variant is a simplified version of the Cube variant, which is
more robust and preserve occlusion. Pitting these two models in contrast to each
other helps us further assess the capabilities of both variants and models.

5.2 Conventional Comparisons - Same Dataset

During training Stage 1, “image to abstract”, we fine-tuned the trained HRNet
network with H36M’s training set along with limb ordering annotations. In Stage
2, “abstract to pose and viewpoint”, we take each GT pose and pair it with
the corresponding GT synthetically generated abstract image from a randomly
chosen synthetic viewpoint taken from our 64×12 synthetic cameras; for testing,
we use only poses and cameras from the real dataset.

Results are in Tab. 1 and Tab. 2. Our method is competitive with both
image (Stage 1 & 2) and abstract image (Stage 2 only) as input. Since the latter
is comparable to methods using GT 2D keypoints as input, we compare against
such methods when available. We believe this is a fair comparison with our work,
since the GT 2D keypoints are projected from 3D joints. During reconstruction,
we always use a preset bone-length. PA-MPJPE score on Tab. 2, which includes
rigid transformation, accounts for bone-length variation and reduces the error
even more. Note that, in both these table we do not claim the lead even though
we lead in quite a few cases. Our focus is to prove viability of using abstract
image as a replacement for 2D keypoints in lifting networks. Our method is
comparable, and sometimes superior, across the board.

5.3 Cross-Dataset Generalization

Our primary focus is improving cross-dataset performance through extensive
training on synthetically generated images. For this experiment, we only con-
sider the case where we train on H36M dataset without any domain adaptation
training (e.g . [44]). To test generalization capabilities, we render the images from
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Table 1: Quantitative comparisions of MPJPE (Protocol #1) between the ground
truth 3D pose and reconstructed 3D pose. Our method shows competitive performance
when image is used as an input. Hybrid abstract-to-pose model is trained on mixed Flat
and Cube abstract images. Note: the results of others, obtained from GT 2D keypoints,
are marked with an asterisk. Multi-frame methods [12,29,41,48] not included.

Method Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Moreno [25] 69.5 80.1 78.2 87 100.7 102.7 76 69.6 104.7 113.9 89.7 98.5 79.2 82.4 77.2 87.3
Chen [4] 71.6 66.6 74.7 79.1 70.1 93.3 67.6 89.3 90.7 195.6 83.5 71.3 85.6 55.7 62.5 82.7
Martinez [23] 51.8 56.2 58.1 59 69.5 78.4 55.2 58.1 74 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Yang [40] 51.5 58.9 50.4 57 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Sharma [30] 48.6 54.5 54.2 55.7 62.6 72 50.5 54.3 70 78.3 58.1 55.4 61.4 45.2 49.7 58
Zhao [45] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55 67.8 61 42.1 60.6 45.3 57.6
Pavlakos [26] 48.5 54.4 54.4 52 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Ci [7] 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50 54.8 40.4 43.3 52.7
Li [16] 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62 73.4 54.8 50.6 56 43.4 45.5 52.7
Martinez [23]* 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58 45.1 46.4 47.6 36.4 40.4 45.5
Zhao [45]* 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39 43.8
Zhou [46] 34.4 42.4 36.6 42.1 38.2 39.8 34.7 40.2 45.6 60.8 39 42.6 42 29.8 31.7 39.9
Gong [10]* - - - - - - - - - - - - - - - 38.2
Zhai [43]* 31.3 34.0 28.0 32.0 33.1 42.1 34.1 28.1 33.6 39.8 31.7 32.9 33.8 26.7 28.9 32.7

Ours (Hybrid) 40.7 52.1 43.8 48.2 46.9 54.4 49.1 51.4 55.6 65.2 47 49.5 44.1 42.1 42.3 48.8
Ours (Cube) 29.0 32.5 29.1 32.0 29.9 38.8 32.1 32.5 38.7 49.5 33.2 33.7 32.1 29.9 29.9 33.5

Table 2: Quantitative comparison of PA-MPJPE (Protocol #2) between the ground
truth 3D pose and reconstructed 3D pose. We follow the same notation as Tab. 1.
Lower is better.

Method Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Moreno [25] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78 73.2 74
Martinez [23] 39.5 43.2 46.4 47 51 56 41.4 40.6 56.5 69.4 49.2 45 49.5 38 43.1 47.7
Li [16] 35.5 39.8 41.3 42.3 46 48.9 36.9 37.3 51 60.6 44.9 40.2 44.1 33.1 36.9 42.6
Ci [7] 36.9 41.6 38 41 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37 42.2
Pavlakos [26] 34.7 39.8 41.8 38.6 42.5 47.5 38 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Sharma [30] 35.3 35.9 45.8 42 40.9 52.6 36.9 35.8 43.5 51.9 44.3 38.8 45.5 29.4 34.3 40.9
Zhou [46] 21.6 27 29.7 28.3 27.3 32.1 23.5 30.3 30 37.7 30.1 25.3 34.2 19.2 23.2 27.9

Ours (Hybrid) 32.8 38.0 35.3 38.2 38.1 44.8 37.9 37.9 47.1 59.4 40.4 39.7 38.1 33.3 34.4 39.7
Ours (Cube) 23.8 27.6 25.5 27.1 26.1 34.5 27.0 28.7 34.4 46.8 28.9 29.0 28.4 24.4 23.9 29.1

GPA, 3DPW, and SURREAL dataset. We report results obtained from all three
variants of our models.

To our knowledge, Wang et al . [39], is the only work with an extensive cross-
dataset analysis on 4 datasets. To add more contenders, we re-implemented
methods from Martinez et al . [23] and Zhao et al . [45], since their code was
available and easily adapted. Both rely on z-score normalization of the testing
set separately from the training set—though we note that such a normalization
is impossible “in the wild”. Even with this advantage, our method still leads in
most cases by 30%–40% in cross-dataset performance (cf. Tab. 3). Goel et al . [9]
outperforms us in 3DPW dataset. We believe this can be attributed to training
a transformer based network on two 3D pose datasets. Gong et al . [10] reported
cross-dataset performance for few networks on 3DPW dataset in PA-MPJPE.
As shown in Tab. 3, we outperform the other methods by about a factor of 2.
Fairness of Comparison. We choose to report all the results both obtained
through GT 2D keypoints and images, because cross-dataset results are hard to
obtain. Both Martinez et al . [23] and Zhao et al . [45] pass only 2D keypoints to
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Table 3: Cross-Dataset results on GPA, 3DPW, SURREAL in MPJPE and PA-
MPJPE. We show significant improvement across all dataset except 3DPW. Asterisk
marks our own experiment. Note: Goel et al . [9] trained their network on two 3D pose
datasets. All the other networks were trained on H36M.

Method MPJPE PA-MPJPE
H36M GPA 3DPW SURR. GPA 3DPW SURR.

Martinez [23]* 55.52 117.37 135.53 108.63
Zhao [45]* 53.59 115.01 154.3 103.75
Wang [39] 52 98.3 124.2 114
Goel [9] (H36M+3DHP Training) 44.8 - 70.0 -

Zhao [45] - 152.3 -
Martinez [23] - 145.2 -
ST-GCN [3] (1-Frame) - 154.3 -
VPose [28] (1-Frame) - 146.3 -
Zhao + Gong [10] - 140 -
Martinez + Gong [10] - 130.3 -
ST-GCN (1-Frame) + Gong [10] - 129.7 -
VPose (1-Frame) + Gong [10] - 129.7 -
Goel [9] - 44.5 -

Ours (Hybrid) 40.01 99.43 106.27 80.13 70.1 71.39 59.06
Ours (Cube) 33.52 92.31 95.83 65.62 69.48 64.28 51.53

the later 3D pose estimation phase. Note the PA-MPJPE reported by Gong et
al . [10] is higher than the MPJPE score we obtained for Martinez et al . [23] and
Zhao et al . [45], which shows that we have given them all possible advantages.

5.4 Qualitative Results

Fig. 6 shows the qualitative performance of our network on H36M. We see view-
point estimation indicated by the blue arrow on the second column of each test
sample. This, indeed shows the accuracy and efficacy of our method on separat-
ing viewpoint from pose.

5.5 Ablative and Other Experiments

Number of Vertical Bins Our synthetic environment has hundreds of cameras
placed systematically in “levels” on the sphere, pointing inwards (cf. Sec. 3.1).
For this study, we reduced the number of levels. Intuitively, decreasing the num-
ber of levels should reduce performance, which is what we see in Fig. 7a. Increase
in number of vertical bins shows a global improvement in cross-dataset perfor-
mance. In Figs. 7b and 7c, we have plotted the azimuth and elevation distribution
across all datasets, demonstrating the generalization and augmentation ability of
our approach. Notice how our approach that relies on random viewpoints, have
an almost uniform distribution. In contrast, notice how majority of the datasets
have more data points distributed at the level of the subject.
Angular Error vs Bin Size With an Ng×Ng heatmap, we expect performance
to decrease with decreasing Ng. From our experiments, the angular error goes
up as we decrease the grid resolution. We see the biggest jump from 16 × 16
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(a) Input Image (b) Abstract Image (c) Ground Truth (d) Prediction

Fig. 6: Qualitative results on H36M dataset.

(13.35◦) to 32×32 (9.24◦), with a smaller change when going to 64×64 (8.44◦),
implying diminishing returns at higher resolutions.
Limb Ablation: we randomly skip rendering a subset of the limbs, causing an
expected increase in error and uncertainty (cf. Fig. 8a).
Variation in Reconstruction Scale For this experiment, we change the bone
lengths that are used to reconstruct the pose, deviating 50% scale up and down
from the average bone lengths of an adult person. When comparing we keep the
ground-truth at default scale (cf. Fig. 8b. Obviously, the reconstructed pose will
not match in scale and the error will increase when deviating from the average
bone lengths. However, at the bottom of the V-shaped curve the error deviation
is small – which means, if the subject scale varies by a small amount, the error is
negligible. As Procrustes alignment is performed first before measuring the error
in PA-MPJPE, the curve forms a straight line and stays below the V curve.
Effect of wrapping on Error We observe the impact of wrapping on the
error by computing pose estimation error on all the actions of H36M dataset
with and without wrapping enabled. As can be seen in Fig. 8c), we achieve an
average of 9.4mm of improvement - from 58.2mm (red) to 48.8mm (blue). In
addition, when we toggle wrapping in predicting viewpoint (i.e. naïve vs our
viewpoint encoding), we see an angular errors are respectively 55.44◦ vs. 8.44◦—
an improvement factor of 6.6.
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Fig. 7: (a) shows how the global cross-dataset error changes as the number of vertical
bins is increased. (b) and (c) demonstrate how our synthetic training set using (unlim-
ited in principle) synthetic viewpoints levels the the distribution of trained viewpoints
in (b) azimuth and (c) elevation. Notice that majority of the datasets have a relative
distribution that is at the level of the subject, whereas ours follow a uniform distribu-
tion.
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Fig. 8: (a) error (MPJPE) vs number of missing parts. As more parts are missing from
the input image, error and uncertainty increases. (b) error as a function of scaled bone
length in the synthetic environment. As expected, error increases as the scale deviates
1.0. (Note that PA-MPJPE applies affine transformation which compensates for scale
difference.) (c) error with (blue) and without (red) wrapping. The errors are plotted
across different actions on H36M dataset. Wrapping is clearly better.

6 Conclusion

We have shown that using abstract images in the task of lifting the pose into
3D gives better cross-dataset results than using 2D keypoints, at negligible cost
to same-dataset results. Moreover, abstract images also enable augmenting the
“lifting” part of the framework to train from a virtually unlimited number of
viewpoints. We have also presented an approach to obtain abstract image from
real-world images, which shows the applicability of our approach.
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