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Fig. 1: DreamSampler can be used for vectorized image restoration, editing, text-
guided inpainting, etc. Code: https://github.com/DreamSampler/dream-sampler

Abstract. Reverse sampling and score-distillation have emerged as main
workhorses in recent years for image manipulation using latent diffu-
sion models (LDMs). While reverse diffusion sampling often requires
adjustments of LDM architecture or feature engineering, score distil-
lation offers a simple yet powerful model-agnostic approach, but it is of-
ten prone to mode-collapsing. To address these limitations and leverage
the strengths of both approaches, here we introduce a novel framework
called DreamSampler, which seamlessly integrates these two distinct ap-
proaches through the lens of regularized latent optimization. Similar to
score-distillation, DreamSampler is a model-agnostic approach applica-
ble to any LDM architecture, but it allows both distillation and reverse
sampling with additional guidance for image editing and reconstruction.
Through experiments involving image editing, SVG reconstruction and
etc, we demonstrate the competitive performance of DreamSampler com-
pared to existing approaches, while providing new applications.

Keywords: Latent diffusion model · Generation · Score distillation

1 Introduction

Diffusion models [6, 26, 27] have been extensively studied as powerful genera-
tive models in recent years. These models operate by generating clean images
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Fig. 2: DreamSampler vs (a) reverse diffusion and (b) score distillation.

from Gaussian noise through a process termed ancestral sampling. This involves
progressively reducing noise by utilizing an estimated score function to guide
the generation process from a random starting point towards the distribution of
natural images. Reverse diffusion sampling introduces stochasticity through the
reverse Wiener process within the framework of SDE [27], contributing to the
prevention of mode collapse in generated samples while enhancing the fidelity [3].
Furthermore, the reverse diffusion can be flexibly regularized by various guid-
ance gradients. For instance, classifier-guidance [3] applies classifier gradients to
intermediate noisy samples, facilitating conditional image generation. Addition-
ally, DPS [1] utilizes approximated likelihood gradients to constrain the sampling
process, ensuring data consistency between the current estimated solution and
given observation, thereby solving noisy inverse problems in a zero-shot manner.

On the other hand, another type of approach, called score distillation, utilizes
diffusion model as prior knowledge for image generation and editing. For exam-
ple, DreamFusion [21] leveraged 2D text-conditioned diffusion models for text-
guided 3D representation learning via NeRF. Here, the diffusion model serves as
the teacher model, generating gradients by comparing its predictions with the
label noises and guiding the generator as the student model. The strength of the
score distillation method lies in its ability to leverage the pre-trained diffusion
model in a black-box manner without requiring any feature engineering, such as
adjustments to the model architecture. Unfortunately, the score distillation is
more often prone to mode collapsing compared to the reverse diffusion.

Although both algorithms are grounded in the same principle of diffusion
models, the approaches appear to be different, making it unclearly how to syn-
ergistically combine the two approaches. To address this, we introduce a uni-
fied framework called DreamSampler, that seamlessly integrates two distinct ap-
proaches and take advantage of the both worlds through the lens of regularized
latent optimization. Specifically, DreamSampler is model-agnostic and does not
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require any feature engineering, such as adjustments to the model architecture.
Moreover, in contrast to the score distillation, DreamSampler is free of mode
collapsing thanks to the stochastic nature of the sampling.

The pioneering aspect of DreamSampler is rooted in two pivotal insights.
First, we demonstrate that the process of latent optimization during reverse dif-
fusion can be viewed as a proximal update from the posterior mean by Tweedie’s
formula. This interpretation allows us to integrate additional regularization terms,
such as measurement consistency in inverse problems, to steer the sampling pro-
cedure. Moreover, we illustrate that the loss associated with the proximal update
can be conceptualized as the score distillation loss. This insight bridges a natu-
ral connection between the score-distillation methodology and reverse sampling
strategies, culminating in their harmonious unification. In subsequent sections,
we will explore various applications emerging from this integrated framework
and demonstrate the efficacy of DreamSampler through empirical evidence.

2 Motivations

2.1 Preliminaries

In LDMs [23], the encoder E� and the decoder D' are trained as auto-encoder,
satisfying x = D'(E�(x)) = D'(z0) where x denotes clean image and z0 denotes
encoded latent vector. Then, the diffusion process is defined on the latent space,
which is a range space of E�. Specifically, the forward diffusion process is

zt =
p
↵̄tz0 +

p
1� ↵̄t✏ (1)

where ↵̄t denotes pre-defined coefficient that manages noise scheduling, and ✏ ⇠
N (0, I) denotes a noise sampled from normal distribution. The reverse diffusion
process requires a score function via a neural network (i.e. diffusion model, ✏✓)
trained by denoising score matching [6, 27]:

min
✓

Et,✏⇠N (0,I)k✏� ✏✓(zt, t)k22. (2)

According to formulation of DDIM [2,26], the reverse sampling from the posterior
distribution p(zt�1|zt, z0) could be described as

zt�1 =
p
↵̄t�1ẑ0|t +

p
1� ↵̄t�1✏̃ (3)

where

ẑ0|t = (zt �
p
1� ↵̄t✏✓(zt, t))/

p
↵̄t (4)

✏̃ =

p
1� ↵̄t�1 � ⌘2�2

t ✏✓(zt, t)p
1� ↵̄t�1

+
⌘�t✏p
1� ↵̄t�1

. (5)

Here, ẑ0|t refers to the denoised latent through Tweedie’s formula, and ✏̃ is
the noise term composed of both deterministic ✏✓(zt, t) and stochastic term
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✏ ⇠ N (0, I). Note that ⌘ and �t denote variables that controls the stochastic
property of sampling. When ⌘�t = 0, the sampling is deterministic.

For text conditioning, classifier-free-guidance (CFG) [7] is widely leveraged.
The estimated noise is computed by

✏!✓ (zt, t, cref ) = ✏✓(zt, t, c?) + ![✏✓(zt, t, cref )� ✏✓(zt, t, c?)] (6)

where ! denotes the guidance scale, c? refers to the null-text embedding, and
cref is the conditioning text embedding, which are encoded by pre-trained text
encoder such as CLIP [22]. For simplicity, we will interchangeably use the terms
✏✓(zt), ✏✓(zt, t) and ✏!✓ (zt, t, cref ) unless stated otherwise.

2.2 Key Observations

Score distillation sampling (SDS) [21] and reverse diffusion [6, 26, 27] represent
two distinct methodologies, each with its own pros and cons. SDS is an opti-
mization method that focuses on minimizing score distillation loss, while reverse
diffusion utilizes ancestral sampling, which stems from SDE or DDPM formula-
tions. Although SDS is straightforward and model-agnostic, it often suffers from
mode collapse due to its non-stochastic nature. Conversely, ancestral sampling
typically avoids mode collapsing and generates more diverse outputs, but it is
non-trivial to generalize the ancestral sampling with generic parameter space,
e.g. NeRF MLP. The primary contribution of our study is the integration of these
two approaches through an optimization perspective based on following key ob-
servations. The first key insight of DreamSampler is that the DDIM sampling
can be interpreted as the solution of following optimization problem:

zt�1 =
p
↵̄t�1z̄ +

p
1� ↵̄t�1✏̃, where z̄ = argmin

z
kz � ẑ0|tk2 (7)

Although looks trivial, one of the important implications of (7) is that we can
now extend the solution of (7) to include additional regularization term,

min
z
kz � ẑ0|tk22 + �regR(z) (8)

where �reg is scalar weight for the regularization function R(z). For example,
we can use data consistency loss to ensure that the updated variable agrees with
the given observation during inverse problem solving [9].

Second key insight arises from the important connection between (7) and
the score-distillation loss. Specifically, using the forward diffusion to generate zt

from the clean latent z:

zt =
p
↵̄tz +

p
1� ↵̄t✏, (9)

the objective function in (7) can be converted to:

kz � ẑ0|tk2 =

����
zt �

p
1� ↵̄t✏p
↵̄t

� zt �
p
1� ↵̄t✏✓(zt, t)p

↵̄t

����
2

(10)

=
1� ↵̄t

↵̄t
k✏� ✏✓(zt, t)k2, (11)

which is equivalent to the score-distillation loss up to a constant scaling factor.
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Fig. 3: Unified framework of DreamSampler. (a) Distillation step where the gradient
is computed from regularized latent optimization problem. (b) Reverse sampling step
where estimated noise by diffusion model is added to the updated generation.

3 DreamSampler

From Section 2.2, it is evident that DDIM sampling inherently includes ‘score-
distillation’ optimization, although it is conducted with z instead of generic pa-
rameters  . Inspired by this observation, we aim to generalize this optimization-
based sampling with arbitrary generic parameter  , as in conventional score
distillation sampling protocols.

3.1 General Formulation

Suppose that g( ) denotes a generated data by an arbitrary generator g and
parameter  . Inspired by the two key insights described in the previous section,
the sampling process of DreamSampler at timestep t is given by3

zt =
p
↵̄tg( t) +

p
1� ↵̄t✏̃, (12)

where the noise ✏̃ is defined as in (5), and

 t = argmin
 

kg( )� ẑ0|tk2 + �regR(g( )), (13)

ẑ0|t =
�
zt �

p
1� ↵̄t✏✓(zt, t)

�
/
p
↵̄t. (14)

It implies that the score distillation sampling and reverse sampling can be in-
tegrated based on this generalized latent optimization framework with proper
generator and regularization functions. In the following sections, we further de-
lineate the special cases of DreamSampler.

3.2 DreamSampler with External Generators

Similar to DreamFusion [21], for any differentiable generator g, DreamSampler
can feasibly update parameters  by leveraging the diffusion model and sharing
3 Here, we omit the encoder E� in E�(g( )) for notational simplicity. The encoder

maps the generated image g( ) to the latent space.
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Algorithm 1 Score Distillation
Require: T , ⇣, g,  , E�, {↵̄t}Tt=1

1: z0  E�(x0)
2: for i = T to 1 do
3: t ⇠ U [0, T ]
4: ✏̃ ⇠ N (0, I)
5: zt  

p
↵̄tz0 +

p
1� ↵̄t✏̃

6: ✏̂✓  ✏!✓ (zt, t, c)
7: r Lds  ✏̃� ✏̂✓
8:    � ⇣r Lds

9: z0  E�(g( ))
10: end for
11: return  

Algorithm 2 DreamSampler
Require: T , ⇣, g,  , E�, {↵̄t}Tt=1

1: z0  E�(x0), ✏✓(zT+1) := ✏ ⇠ N (0, I)
2: for i = T to 1 do
3: t i, ✏ ⇠ N (0, I)

4: ✏̃ 
p

1�↵̄t�1�⌘2�2
t ✏̂✓+⌘�t✏p

1�↵̄t

5: zt  
p
↵̄tz0 +

p
1� ↵̄t✏̃

6: ✏̂✓  ✏!✓ (zt, t, c)
7: r Lds  ✏̃� ✏̂✓
8:    � ⇣[r Lds + �regr R(z)]
9: z0  E�(g( ))

10: end for
11: return  

the same sampling process. To emphasize the distinctions between the origi-
nal score distillation algorithms and DreamSampler, we conduct a line-by-line
comparison of the pseudocode in Algorithm 1 and Algorithm 2.

First, DreamSampler follows the timestep schedule of the reverse sampling
process, while distillation sampling algorithms use uniformly random timestep
for optimization. This provides us with a novel potential for further refinement
in utilizing various time schedulers to improve reconstruction quality or accel-
erate sampling. Second, as DreamSampler is built upon the general proximal
optimization framework, it is compatible with additional regularization func-
tions. From this design, one can explore various applications of the proposed
distillation sampling. For example, by defining the regularization function as a
data consistency term, one can constrain the generator to reconstruct the true
image that aligns with the given measurement for inverse imaging.

Figure 3 illustrates the sampling process of DreamSampler. At each timestep,
the generated image g( ) is mapped to a noisy manifold by incorporating the
estimated noise from the previous timestep, and new noise is subsequently esti-
mated by the diffusion model. The distillation gradient is then computed between
these two estimated noises and utilized to update the generator parameters.

3.3 DreamSampler for Image Editing

As DreamSampler is a general framework, we can reproduce other existing algo-
rithms by properly defining g( ), ẑ0|t, and R. As a representative example, here
we derive Delta Denoising Score (DDS) [4] for image editing task and discuss its
potential extension from the perspective of DreamSampler.

The main assumption of DDS is to decompose the SDS gradient [21] into text
component and bias component, where only the text component contains infor-
mation to be edited according to given text prompt while the bias component
includes preserved information. To remove the bias component from distilla-
tion gradient, DDS leverages the difference of two conditional predicted noises,
✏✓(zt, t, ctgt) � ✏✓(zt, t, csrc), where ctgt denotes description of editing direction
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and csrc denotes description of the original image. Specifically, DDS update to
clean latent reads 4

z̄ = z � �[✏✓(zt, t, ctgt)� ✏✓(zt, t, csrc)]. (15)

In the context of Dreamsampler, let the generator g( ) := z be a clean latent.
Then, the following Theorem 1 shows that the one-step DDS update can be
reproduced with DreamSampler, by defining the regularization function R(z) as
Euclidean distance from the posterior mean conditioned on text.

Theorem 1. Supposed csrc in (15) be defined as the null-text, i.e. csrc = c?
and consider text-conditioned posterior mean:

ẑ0|t(c) = E[z0|zt, c] = (zt �
p
1� ↵̄t✏✓(zt, t, c))/

p
↵̄t. (16)

Then, DDS update in (15) can be obtained from the following latent optimization:

min
z
kz � ẑ0|t(c?)k2 + �R(z), where R(z) :=

kz � ẑ0|t(ctgt)k2

(1� �) (17)

Furthermore, it is equivalent to Tweedie’s formula with CFG, i.e.:

ẑ�0|t(ctgt) :=
zt �

p
1� ↵̄t✏

�
✓ (zt, t, ctgt)p

↵̄t
(18)

where ✏�✓ (zt, t, ctgt) = ✏✓(zt, t, c?) + �[✏✓(zt, t, ctgt)� ✏✓(zt, t, c?)].

Theorem 1 reveals that the one step latent optimization (17) of DreamSam-
pler reproduces the DDS update (15). That being said, the main advantages
of DreamSampler stems from the added noise to updated source image z0.
Specifically, in contrast to the original DDS method that adds newly sampled
Gaussian noise to z0, DreamSampler adds the estimated noise by ✏✓ in the pre-
vious timestep of reverse sampling. Initiated from the inverted noise, reverse
sampling do not deviate significantly from the reconstruction trajectory even
though source prompt is not given, because the latent optimization (17) rep-
resents a proximal problem that regulates the sampling process. Consequently,
DreamSampler only requires text prompt that describe the editing direction for
the real imaging editing.

Finally, it is noteworthy that the equivalent interpretation (18) could be
readily extended to spatially localized distillation by computing the solution as

ẑ�0|t =

 
zt �

p
1� ↵̄t

X

i

Mi � ✏�✓ (zt, t, c
(i)
tgt)

!
/
p
↵̄t (19)

4 The update term is equivalent to (3) in [4] when ✓ = z, ŷ = csrc, and y = ctgt.
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where Mi denotes the pixel-wise mask, � is element-wise multiplication, and
c(i)tgt denote ith mask and corresponding text prompt pair. The entire process for
the real image editing via DreamSampler is described in Algorithm 3. Remark
that the Algorithm 3 is equivalent to the Algorithm 2 through Theorem 1, by
setting ⌘�t = 0 to achieve the deterministic sampling, and by setting ! = 0
to ensure that the latent optimization problem is solved during unconditional
sampling. Line 9 of the Algorithm 2 is disappeared since we are assuming that
 = z0 and g as identity mapping.

3.4 DreamSampler for Inverse Problems
DreamSampler can leverage multiple regularization terms to precisely constrain
the sampling process to solve inverse problems. For example, we can solve the
text-guided image inpainting task by defining the regularization function as

R(z) = (1� �)kM� (z � ẑ0|t(ctgt))k2 + �ky �AD'(z)k2, (20)

where M denotes the operation to create the measurement by masking out the
target region. This regularization term implies that the sample image satisfies
data consistency for regions where the true signal is preserved, while guiding
the masked region to reflect the target text prompt. When we solve the en-
tire latent optimization problem, we follows two-step approach of TReg [9]. For
the details, refer to the appendix. The main difference with TReg is that we
separate the text-guidance from the data consistency term. In other words,
we initialize the z for the data consistency term as ẑ0|t(c?) while TReg uses
(1 � !)ẑ0|t(c?) + !ẑ0|t(ctgt) where the ! denotes the CFG scale. This differ-
ence allows DreamSampler to solve the inpainting problem with different text-
guidance for each masked region, by combining localized distillation approach
introduced in Section 3.3.

4 Experimental Results

4.1 Image Restoration through Vectorization

As a novel application that other methods have not explored, here we present an
image vectorization from blurry measurement using DreamSampler. In this sce-

Algorithm 3 DreamSampler for Image Editing
Require: source image x, image encoder E�, latent diffusion model ✏✓, null-text

embedding c?, conditioning text embedding ctgt.
z0  E�(x)
zT  Inversion(z0)
for t 2 [T, 0] do

✏̂✓  ✏✓(zt, t, c?) + �[✏✓(zt, t, ctgt)� ✏✓(zt, t, c?)]
z̄  (zt �

p
1� ↵̄t✏̂✓)/

p
↵̄t

zt  
p
↵̄t�1z̄ +

p
1� ↵̄t�1✏✓(zt, t, c?)

end for
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Fig. 4: Representative results for image vectorization task with image reconstruction.

nario, the generator g(·) corresponds to a differentiable rasterizer (DiffVG [11]),
and the parameters  of the generator consist of path parameters comprising
Scalable Vector Graphics (SVG).

Specifically, we address a text-guided SVG inverse problem, acknowledging
that low-quality, noisy measurements can detract from the detail and aesthetic
quality of vector designs. Here, our goal is to accurately reconstruct SVG paths
for the parameter  that, when rasterized, align closely with the provided mea-
surements y and text conditions cy, related through the forward measurement
operator A. In this context, the regularizer R in (14) corresponds to the data
consistency term. Forward measurement operators are specified as follows: (a)
For super-resolution, bicubic downsampling is performed with scale ⇥8. (b) For
Gaussian blur, the kernel has size 61⇥ 61 with a standard deviation of 5. Then,
the latent optimization framework of the SVG inverse problem is defined as:

min
 

(1� �)�SDSkE(g( ))� ẑ0|t(cy)k2 + ��DCky �Ag( )k2, (21)

where we found out that � = ↵̄t works well in practice. SVG primitives  
are initialized with radius 20, random fill color, and opacity uniformly sampled
between 0.7 and 1, following [8]. In this paper, we use closed Bézier curves for
iconography artistic style. For the optimization of (21), we use Adam optimizer
with (�1,�2)=(0.9, 0.9). For the text condition cy, we append a suffix to the
object5. Additional experimental details are provided in the appendix.
5 e.g. "{a cute fox}, minimal flat 2d vector icon. lineal color. on a white background.

trending on artstation."
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Fig. 5: Qualitative comparison of SVG reconstruction. For baselines, we first obtain an
initial reconstruction using PSLD [25], vectorize it with LIVE [15], and refine the output
vector with VectorFusion [8] or PDS [10]. DreamSampler outperforms this multi-step
approach by simultaneously solving the inverse problem and updating SVG parameters
via score distillation.

Comparatively, the proposed framework is evaluated against a multi-stage
baseline approach involving initial rasterized image reconstruction using the
state-of-the-art solver (PSLD [24]) that is based on the latent diffusion model.
Then, we vectorize the reconstruction using the off-the-shelf Layer-wise Image
Vectorization program (LIVE [15]). An optional step includes refining the SVG
output via latent score distillation sampling algorithms, exemplified by Vector-
Fusion [8] and Posterior Distillation Sampling (PDS, [10]).

Figure 4 illustrates that the proposed framework achieves high-quality SVG
reconstructions with semantic alignment closely matching the specified text con-
dition cy. In contrast, Figure 5 highlights the deficiencies of the multi-stage base-
line methods, particularly its inability to retain detailed fidelity. Errors accumu-
late during the initial restoration process, resulting in blurriness and undesirable
path overlap in the vector outputs. While the solver may achieve adequate recon-
structions, the subsequent vectorization step disregards text caption cy, leading
to the potential loss of details and semantic coherence. Additional VectorFusion
fine-tuning loses consistency with the measurement. Conversely, DreamSampler
effectively restores SVGs by directly utilizing latent-space diffusion and text con-
ditions for both vectorization and reconstruction, ensuring the preservation of
detail and contextual relevance.

4.2 Real Image Editing

For real image editing via DreamSampler, we leverage the Stable-Diffusion v1.5
provided by HuggingFace. We use linear time schedule and set NFE to 200
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Fig. 6: Representative results for real image editing via distillation through reverse
sampling. We leverage source images from various domains and the caption above each
image denotes text prompt reflecting the editing direction. The result demonstrates
that distillation could be effectively conducted during the reverse sampling.

for both the DDIM inversion and reverse sampling. For more details on hyper-
parameter setting, please refer to the appendix.

To demonstrate the ability of DreamSampler in real image editing, we lever-
age source images from various domains, including photographs of animals, hu-
man faces and drawings. All results in Figure 6 show that DreamSampler ac-
curately reflects the provided text prompts for editing. Specifically, DreamSam-
pler does not change bias components, which are intended not to be edited by
text prompt. For instance, in 3rd and 4th rows of Figure 6, features such as
braces and background including striped shirt, are well-maintained while the
text prompts are accurately reflected. Moreover, DreamSampler effectively re-
flects multiple editing directions simultaneously such as "doberman" + "wearing
glasses", "woman" + "wearing glasses" or "photography" + "fox". We next con-
duct a qualitative comparison with the original DDS algorithm to show the im-
provement from integration of distillation into reverse sampling. As illustrated in
Figure 7, DreamSampler is capable of editing according to text prompt robustly
across various domains of source images. Furthermore, DreamSampler achieves
better fidelity and bias component preservation compared to the original DDS.
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Fig. 7: Qualitative comparison with DDS for the real image editing. Both DreamSam-
pler and DDS edit images following target text, but DreamSampler achieves higher
fidelity with preserving bias component.

For the quantitative comparison, we compare DreamSampler against diffusion-
based editing algorithms [5,16,18], following the experimental setups of [19,20].
We use the prompt "a photograph of {}" with the source and target objects
inserted. For the CFG scale, we use 0.15↵̄t across all cases. Table 1 demon-
strates that DreamSampler outperforms most baselines in image editing tasks.
Specifically, DreamSampler generates glasses more naturally in the "cat ! cat
w/ glasses" task, improves fidelity in source image edits compared to baseline
algorithms as shown in Figure S10. Some baselines achieve high CLIP accuracy
by focusing on the generation of glasses, regardless of its natural appearance.

4.3 Text-guided Image Inpainting

For the text-guided image inpainting task, we also use Stable-Diffusion v1.5, lin-
ear time schedule, and 200 NFE. In addition to solving (20), we apply DPS [1]
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Table 1: Comparison to diffusion-based editing methods. Dist for DINO-ViT Structure
Distance. Baseline results are from [19].

Method Cat!Dog Horse!Zebra Cat! Cat w/ glasses
CLIP-Acc " Dist # CLIP-Acc " Dist # CLIP-Acc " Dist #

SDEdit + word swap 71.2% 0.081 92.2% 0.105 34.0% 0.082
DDIM + word swap 72.0% 0.087 94.0% 0.123 37.6% 0.085
prompt to prompt 66.0% 0.080 18.4% 0.095 69.6% 0.081

p2p-zero 92.4% 0.044 75.2% 0.066 71.2% 0.028
EBCA 93.7% 0.040 90.4% 0.061 81.1% 0.052

DreamSampler (Ours) 90.3% 0.029 95.2% 0.038 48.3% 0.025

Table 2: Comparison to text-conditioned diffusion-based inpainting solvers. Bold: the
best score, Underline: the second best.

Method Glasses Smile
PSNR " FID # CLIP-sim " PSNR " FID # CLIP-sim "

Stable-Inpaint 19.82 54.26 0.281 25.33 19.22 0.249

TReg 21.97 61.04 0.288 26.71 24.48 0.249
DreamSampler (Ours) 24.61 27.10 0.263 27.90 24.33 0.242

steps during sampling by following TReg [9] to enhance the consistency of masked
region and other regions. We generate measurements by masking out two rect-
angular regions on the eyes and mouth, where the masked region is determined
based on the averaged face of the 1k FFHQ validation set. The size of measure-
ment is 512 ⇥ 512. We solve the inpainting problem by giving text prompts "a
photography of face wearing glasses" and "a photography of face with smile".
Figure 8 shows that DreamSampler fills masked region by reflecting given text
prompt accurately. While the text guidance is applied inside the mask, data
consistency gradients combined with the reconstruction by inversion is applied
outside the mask, which results in superior fidelity of the output image. Note
that we display the image output as is without any post-processing such as pro-
jection6. The bottom row of Figure 8 depict the solution for inpainting problem
with two different masks and distinct text guidance. Through localized distil-
lation gradient, DreamSampler generates solutions according to the provided
guidance. DreamSampler generates masked regions with better robustness than
TReg. Additionally, in the case of multiple masks, DreamSampler successfully
reflects text in the correct regions via localized distillation gradients, whereas
TReg fails to meet one of the conditions. For more results, refer to appendix.

We also evaluate both the quality of reconstructions (PSNR, FID) and the
accuracy of the text guidance (CLIP similarity) on 1k FFHQ validation set.
For baselines, we select diffusion-based image inpainting models [14, 23] and a
text-guided inverse problem solver [9]. Specifically, Stable-Inpaint [23] is a fine-
tuned StableDiffusion model specialized for inpainting task. Table 2 shows that
DreamSampler outperforms the baselines in terms of PSNR and FID score while

6 For linear operator A and measurement y, the projection means A>Ay + (I �
A>A)x.
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Fig. 8: Qualitative comparison for text guided image inpainting task. DreamSampler
can generate more realistic images according to given text prompt.

achieving comparable CLIP similarity. Stable-Inpaint achieves a lower FID score,
while DreamSampler, serving as a zero-shot inpainting solver, achieves a higher
PSNR. This suggests superior reconstruction quality of Dreamsampler through
data consistency update.

5 Conclusion
We presented DreamSampler, a unified framework of reverse sampling and score
distillation by taking the advantages of each algorithms. Specifically, we con-
nected two distinct algorithms under the perspective of latent optimization
problem. Consequently, we introduced a generalized optimization framework,
which offers new design space to solve various applications. Especially, Dream-
Sampler enables to combine various regularization functions to constrain the
sampling process. Additionally, we provided three applications including im-
age vectorization with reconstruction, real image editing, and image inpaint-
ing. DreamSampler could be extended to other algorithms by defining appro-
priate regularization functions. The codebase is available to public at https:
//github.com/DreamSampler/dream-sampler.
Potential negative social impact. The performance of algorithms established
on DreamSampler heavily depends on the prior of diffusion model. Hence, the
proposed method basically influenced by the potential negative impacts of LDM
itself. Thus, proper political regulation is required to mitigate these risks.

https://github.com/DreamSampler/dream-sampler
https://github.com/DreamSampler/dream-sampler
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