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Fig. 1: Selected ultra-high-resolution upsampling examples of Inf-DiT, based on SDXL,
DALL-E 3, and real images.

Abstract. Diffusion models have shown remarkable performance in im-
age generation in recent years. However, due to a quadratic increase
in memory during generating ultra-high-resolution images (e.g. 4096 ⇥
4096), the resolution of generated images is often limited to 1024⇥1024.
In this work. we propose a unidirectional block attention mechanism that
can adaptively adjust the memory overhead during the inference process
and handle global dependencies. Building on this module, we adopt the
DiT structure for upsampling and develop an infinite super-resolution
model capable of upsampling images of various shapes and resolutions.
Comprehensive experiments show that our model achieves SOTA perfor-
mance in generating ultra-high-resolution images in both machine and
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human evaluation. Compared to commonly used UNet structures, our
model can save more than 5⇥ memory when generating 4096 ⇥ 4096
images. The project URL is https://github.com/THUDM/Inf-DiT.

Keywords: diffusion model · ultra-high-resolution generation · super-
resolution

1 Introduction

Fig. 2: Comparison of memory us-
age during inference at different
resolutions between our model and
the SDXL architecture.

Recent years have witnessed rapid advance-
ments in diffusion models, which significantly
propelling the field of image generation and
editing forward. Despite the advancements,
a critical limitation persists: the resolution
of images produced by existing image diffu-
sion models is generally confined to 1024 ⇥
1024 pixels or lower, posing a significant
challenge for generating ultra-high-resolution
images, which are indispensable in various
real-world applications including intricate de-
sign projects, advertising, and the creation of
posters and wallpapers, etc.

A commonly used approach for generat-
ing high resolution is cascaded generation [12],
which first produces a low-resolution image,
then applies multiple upsampling models to
increase the image’s resolution step by step.
This approach breaks down the generation
of high-resolution images into multiple tasks.
Based on the results generated in the previous stage, the models in the later
stages only need to perform local generation. Building upon the cascaded struc-
ture, both DALL-E2 [21] and Imagen [23] can effectively generate images with
1024 resolution.

The biggest challenge for upsampling to much higher resolution images is the
significant GPU memory demands. For example, if utilizing the widely-adopted
U-Net architecture such as SDXL [18] for image inference (see Figure 2), we ob-
serve a dramatic escalation in memory consumption with increasing resolution.
Specifically, generating a 4096⇥4096 resolution image, which comprises over 16
million pixels requires more than 80GB of memory, exceeding the capacities of
standard RTX 4090 or A100 graphics cards. Furthermore, the process of train-
ing models for high-resolution image generation exacerbates these demands, as
it necessitates additional memory for storing gradients, optimizer states, etc.
LDM [21] reduces the memory consumption by utilizing Variational Autoen-
coder(VAE) to compress images and generating images in a smaller latent space.
However, it is also emphasized that an excessively high compression ratio can
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substantially deteriorate the quality of generation, imposing severe limitations
on the reduction of memory consumption.

We observe that one common and critical problem among the aforementioned
models is the necessity to input the entire image to the model, which requires
keeping O(N2) hidden states in memory, where N is the width(height) of the
image. Based on this observation, we propose a Unidirectional Block Attention
(UniBA) algorithm that can dramatically reduce the space complexity of gen-
eration from O(N2) to O(N), increasing the highest available resolution for a
large margin (Fig. 2). Specifically, in every diffusion step, we split the image
into blocks and perform a sequential batch generation order among them, where
each batch simultaneously produces a subset of the blocks, and any amount of
blocks can be generated in parallel as long as the memory restriction allows. It is
worth noting that, though the model only inputs part of image into the model at
the same time, UniBA successfully preserves the ability to interact with hidden
states of faraway blocks and maintain high-level semantic consistency. This is
different from other block-based generation methods such as [2,14,29] that only
interact with blocks in pixel space or compressed latent space.

Based on this algorithm, we optimize diffusion transformer (DiT) and train
a model named Inf-DiT, which is capable of upsampling images of varying reso-
lution and shape. Furthermore, we design several techniques including providing
global image embedding to enhance the global semantic consistency and offer
zero-shot text control ability, and provision of all neighboring low-resolution(LR)
blocks through cross-attention mechanisms to further enhance the local consis-
tency. Evaluation results show that Inf-DiT achieved significantly superior re-
sults compared to other high-resolution generative models in both machine and
human evaluation.

To summarize, our main contributions are as follows:

1. We propose Unidirectional Block Attention (UniBA) algorithm, which re-
duces the minimum memory consumption from O(N2) to O(N) during in-
ference, where N represents the edge length. This mechanism is also capable
of adapting to various memory restrictions by adjusting the number of blocks
generated in parallel, trading off between memory and time overhead.

2. Based on these methods, we train an image upsampling diffusion model,
Inf-DiT, a 700M model capable of upsampling images of varying resolutions
and shapes. Inf-DiT achieves state-of-the-art performance in both machine
(HPDv2 and DIV2K datasets) and human evaluation.

3. We design multiple techniques to further enhance local and global consis-
tency, and offer a zero-shot ability for flexible text control.

2 Methodology

2.1 Unidirectional Block Attention (UniBA)

We observe that the critical obstacle for generating ultra-high resolution images
is memory limitation. As the resolution of the image increases, the corresponding
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Fig. 3: Left: Unidirectional block attention. In our implementation, each block directly
depends on the three blocks in each layer: the blocks in the upper left corner, on the
left, and on the top. Right: The inference process of Inf-DiT. Inf-DiT generates n⇥ n
block each time, based on the memory size. During this process, only the KV-cache of
the blocks that subsequent blocks depend on are stored in memory.

hidden state’s size within the network expands quadratically. For example, a
single hidden state with the shape of 2048 ⇥ 2048 ⇥ 1280 in only one layer
requires 20GB of memory, making it formidable to generate very large images.
How to avoid storing the entire image’s hidden state in memory becomes the
key issue.

Our main idea is to divide an image x 2 RH⇥W⇥C into blocks xb 2 Rh⇥w⇥B
2⇥C

, where B is block size and h = H

B
, w = W

B
. When the image is fed into the net-

work, the channel size and resolution of a block may change, but the layout and
the relative positional relationships between blocks will remain unchanged. If
there is a way to apply sequential batch generation of blocks where each batch
simultaneously produces a subset of the blocks, only a small number of block
hidden states have to be kept in memory simultaneously, making it possible to
generate ultra-high-resolution images.

Here we define that blockA is dependent on blockB if the generation of blockA
involves the hidden state of blockB in computation. It can be observed that
the dependencies between blocks are bidirectional in most previous structures
(UNet, DiT, etc.), in which case all blocks in the image must be generated
simultaneously. Take UNet as an example: two adjacent elements in neighboring
blocks use each other’s hidden state in the convolution operation, therefore all
pairs of neighboring blocks must be generated simultaneously. Given the aim
to save the memory of blocks’ hidden states, we hope to devise an algorithm
that allows the blocks in the same image to be divided into several batches for
generation, with each batch only needing to generate a portion of the blocks at
the same time, and the batches are generated in sequence. Generally, an image
generation algorithm can perform such a sequential batch generation among
blocks if it meets the following conditions:

1. The generative dependency between blocks are unidirectional, and can form
a directed acyclic graph (DAG).
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2. Each block has only a few direct (1st-order) dependencies on other blocks,
since the hidden states of the block and its direct dependencies should si-
multaneously be kept in the memory.

Furthermore, to ensure consistency across the whole image, it also required that
the blocks have a large enough receptive field to manage long-range dependencies.

According to the conditions and analysis above, we choose an efficient im-
plementation illustrated in Fig. 3, Unidirectional Block Attention(UniBA). For
each layer, every block directly depends on three 1st-order neighboring blocks:
the block on the top, on the left, and in the upper left corner. For example, if we
adopt Diffusion Transformer (DiT) architecture which is the base architecture of
Inf-DiT, the dependency between blocks is attention operation, where the query
vectors of each block interact with the key, value vectors of 4 blocks: 3 blocks
located to its upper left and itself, illustrated in Fig. 3.

Formally, the UniBA process in the transformer can be formulated as

Q = zn

(i,j)W
Q
, (1)

K = [zn

(i,j) + P1; z
n

(i�1,j) + P2; z
n

(i,j�1) + P3; z
n

(i�1,j�1) + P4]W
K
, (2)

V = [zn

(i,j); z
n

(i�1,j); z
n

(i,j�1); z
n

(i�1,j�1)]W
V
, (3)

zn+1
(i,j) = FFN(Attention(Q,K,V )), (4)

where zn

(i,j) is the hidden states of the block at row i, column j in layer n,and
Pi is the block-level relative position encoding. We also implement an efficient
approach to apply UniBA for full image in pytorch style, which is attached in
the Appendix A.

Note that, though each block only attends to a few number of neighboring
blocks in each layer, as features propagate layer by layer, blocks can indirectly
interact with faraway blocks, thereby capturing both long- and short-range re-
lationships. Our design shares a similar spirit with the natural language model
Transformer-XL [4], which can be viewed as a special form of ours in one dimen-
sion case.

Inference process with O(N) Memory Consumption Although our method
can generate each block sequentially, it differs from auto-regressive generative
models, in which the next block depends on the final output of the previous
block. Any number of blocks can also be generated in parallel in our model, as
long as the union of their dependent blocks has been generated. Based on this
property, we implement a simple but effective inference process. As illustrated
in Fig. 3, we generate n ⇥ n blocks at once, from the top-left to bottom-right.
After generating a set of blocks, we discard hidden states i.e. KV-cache that are
no longer used and append newly generated KV-cache to the memory.

It can be easily proved that the number of block KV-cache retained in mem-
ory during the process is always  w + n. Assume the space needed by the
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model when generating a single block is M1, the space for one block’s KV-
cache is M2, and other essential space consumption (such as storing the raw
input image) is C, then the maximum space usage of the inference process is
n
2
M1+(w+n)M2+C. When n is much smaller than w, the memory consump-

tion is directly proportional to w. If w is bigger than h, we can easily change the
trajectory of generation to column-major.

In practical terms, despite the total FLOPs of generation remaining constant
for various values of n, due to the overhead such as operator initialization time
and memory allocation time, the generation time decreases when n increases.
Therefore, it’s optimal to choose the largest n allowed by the memory limitation.

2.2 Basic Model Architecture

Fig. 4: (Left) Overall architecture of Inf-DiT. (Right) The inner structure of Inf-DiT
block. We do not depict the Layernorm that originally existed in the DiT for simplicity.

Figure 4 provides an overview of our model, Inf-DiT’s architecture. The
model uses a similar backbone as DiT [17], which applies Vision Transformer
(ViT) [6] to diffusion models and proves its efficacy and scalability. In addition
to its superior performance, compared to convolution-based architectures such as
UNet [22], DiT solely utilizes attention as the mechanism of interaction among
patches, which can conveniently implement unidirectional block attention. To
adapt to unidirectional block attention and enhance the performance of upsam-
pling, we make several modifications and optimizations detailed as follows.

Model input Inf-DiT first partitions input images into multiple non-overlapping
blocks, which are further divided into patches with a side length equal to the patch
size. Unlike DiT, considering the compression loss such as color shifting and de-
tail loss, the patchifying of Inf-DiT is conducted in RGB pixel space instead of
latent space. In the case of super-resolution by f times, Inf-DiT first upsamples
the low-resolution RGB image condition by a factor of f , then concatenates it
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with the diffusion’s noised input on the feature dimension before feeding it to
the model.

Position Encoding Unlike UNet-based diffusion models [21] that can perceive
positional relationships through convolution operations, all operations including
self-attention, FFN in transformers are permutation invariant functions. There-
fore, transformer-based models require auxiliary input of explicit positional infor-
mation. We refer to the design of Rotary Positional Encoding (RoPE) [28], which
performs well in the long context generation, and adapt it into two-dimensional
form for image generation. Specifically, we divide channels of hidden states in
half, one for encoding the x-coordinate and the other for the y-coordinate, and
apply RoPE in both halves. We create a sufficiently large rope positional encod-
ing table to ensure it meets the requirements during generation. To ensure all
parts of the positional encoding table can be seen by the model during training,
we employ the Random Starting Point : For each training image, we randomly
assign a position (x, y) for the top-left corner of the image, instead of the de-
fault (0, 0). In addition, considering the difference in interactions within the same
block and between different blocks, we additionally introduce block-level relative
position encoding P1⇠4, which assigns a distinct learnable embedding based on
the relative position before attention.

2.3 Global and Local Consistency

Global Consistency with CLIP Image Embedding The global semantic
information within low-resolution (LR) images, such as artistic style and ob-
ject material, plays a crucial role during upsampling. However, compared to
text-to-image generation models, the upsampling model has an additional task:
understanding and analyzing the semantic information of LR images, which sig-
nificantly increases the model’s burden. This is particularly challenging when
training without text data, as high-resolution images rarely have high-quality
paired texts, making these aspects difficult for the model. We utilize the image
encoder from pre-trained CLIP [19] to extract image embedding ILR from low-
resolution images, which we refer to as Semantic Input. Since CLIP is trained
on massive image-text pairs from the Internet, its image encoder can effectively
extract global information. We add the global semantic embedding to the time
embedding of the diffusion transformer and input it into each layer, enabling the
model to learn directly from high-level semantic information.

Another interesting advantage of global semantic embedding is that, using
the aligned image-text latent space in CLIP, we can use text to guide the direction
of generation, even if our model has not been trained on any image-text pairs.
Given a positive prompt Cpos and a negative prompt Cneg, we can update our
image embedding:

ĨLR = norm(ILR + ↵(TextEnc(Cpos)� TextEnc(Cneg))), (5)

where ↵ can control the intensity of the guidance. During inference, we can
simply use ĨLR in place of ILR as the global semantic embedding to conduct
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the control. For example, to get a more clear result set, Cpos = “clear” and
Cneg = “blur” sometimes help.

Local Consistency with Nearby LR Cross Attention Although concate-
nating the LR image with noised input already provides a good inductive bias
for models to learn the local correspondence between LR and HR images, there
can still be continuity issues. The reason is that, there are several possibilities
of upsampling for a given LR block, which require analysis in conjunction with
several nearby LR blocks to select one solution, but the LR block to the right
and below is unseen. To handle this problem, we introduce Nearby LR Cross At-
tention. In the first layer of the transformer, each block conducts cross-attention
on the surrounding 3⇥ 3 LR blocks to capture nearby LR information. This ap-
proach significantly reduces the probability of generating discontinuous images.
It is worth noting that this operation will not change our inference process since
the entire LR image is known before generation.

We further devise techniques including continuity class-free guidance, LR-
based noise initialization, QK Normalization, etc., which are elaborated in detail
in the Appendix A.

3 Experiments

In this section, we first introduce the detailed training process of Inf-DiT, then
comprehensively evaluate Inf-DiT by both machine and human evaluation. The
results show that Inf-DiT surpasses all baselines, excelling in both ultra-high-
resolution image generation and upsampling tasks. Finally, we conduct ablation
studies to validate the effectiveness of our design.

3.1 Training Details

Datasets Our dataset comprises a subset of LAION-5B [25] with a resolution
higher than 1024⇥1024 and aesthetic score higher than 5, and 100 thousand high-
resolution wallpapers from the Internet. Following the previous works [20,23,30],
we use fixed-size image crops of 512⇥512 resolution during training. Since upsam-
pling can be conducted with local information only, it can be directly employed at
higher resolution during inference, which is not easy for most generation models.
The data processing details are illustrated in Appendix A.2.

Training settings During training, We set block size = 128 and patch size = 4,
which means every training image is divided into 4 ⇥ 4 blocks and every block
has 32⇥32 patches. We employ the framework of EDM [15] for training, and set
the upsampling factor to 4⇥. Because the upsampling task is more concerned
with the high-frequency details of images, we adjusted the mean and std of
training noise distribution to �1.0 and 1.4. To address overflow problem during
training, we employed BF16 format due to its broader numerical range. Our
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CLIP model is a ViT-L/16 pre-trained on Datacomp dataset [13]. Since the
CLIP can only process images with 224 ⇥ 224 resolution, we first resize LR
images to 224⇥ 224 and then input them to CLIP. Other hyperparameters are
listed in the Appendix A.

Direct Patch Scalecrafter BSRGAN Demofusion Inf-DiT
Fig. 5: Qualitative comparison of different methods in detail at 2048⇥ 2048 resolution

3.2 Machine Evaluation

In this part, we conduct quantitative comparisons of Inf-DiT against state-
of-the-art methodologies on ultra-high-resolution image generation tasks. The
baselines encompass two main categories of high-resolution generation: 1. Direct

Table 1: Quantitative comparison results with state-of-the-art methods of super res-
olution on DIV2K dataset. The best results are marked in bold.

Setting Method FID # FIDcrop # PSNR " SSIM "

Variable resolution
BSRGAN 35.0 143.2 25.9 0.73

Real-ESRGAN 35.5 127.6 25.2 0.72
Inf-DiT(Ours) 20.2 76.5 26.3 0.74

Fix resolution (512x512) StableSR 74.8 112.6 22.0 0.60
Inf-DiT(Ours) 38.6 83.3 24.6 0.67

Fix resolution (256x256) LDM 152.6 - 23.9 0.66
Inf-DiT(Ours) 86.8 - 24.6 0.67
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Patch Scalecrafter BSRGAN Demofusion Inf-DiT
Fig. 6: Qualitative comparison of different methods in detail at 4096⇥ 4096 resolution

high-resolution image generation, including Direct Inference of SDXL [18], Mul-
tiDiffusion [2], ScaleCrafter [9], and 2. High-resolution image generation based
on super-resolution techniques, including BSRGAN [33], DemoFusion [7]. We
employ the FID (Fréchet Inception Distance) [10] to evaluate the quality of
ultra-high-resolution generation, which is widely used to evaluate the percep-
tual quality of images in image generation tasks [17, 21, 23]. To further validate
the super-resolution ability of our model, we additionally benchmark it against
renowned super-resolution models over classic super-resolution tasks.

Ultra-High-Resolution Generation We use the test set of HPDv2 [31] for
evaluation, which allows for a comprehensive evaluation of the model’s genera-
tive capabilities (3200 prompts) across various domains and styles (“Animation”,
“Concept-art”, “Painting”, and “Photo”). We test on two resolutions: 20482 and
40962. For super-resolution-based models, we first use SDXL to generate a 10242

resolution image and upsample it without text. Although Inf-DiT was trained
in a setting with 4⇥ upsample, we find that it can generalize well to upsampling
ratios lower than training. Therefore, for 20482 generation, we directly resize
the LR image from 10242 to 20482 and concatenate it with the noise input. As
for the metrics, we use FID to assess how closely generated images mimic real
image distributions, and the real images are randomly sampled from LAION-5B.
However, the original implementation of FID downsamples the input image to
299 ⇥ 299 before the feature extraction, which ignores critical high-resolution
details. Therefore, inspired by [3,7], we additionally adopted the idea of FIDcrop
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Table 2: Quantitative comparison results with state-of-the-art methods of ultra-high-
resolution generation on HPDV2 dataset. The best results are marked in bold, and
the second best results are marked by underline.

Method 2048⇥ 2048 4096⇥ 4096 Mean #
FID # FIDcrop # FID # FIDcrop #

Direct Inference 92.2 92.3 OOM OOM 92.3
MultiDiffusion 99.7 109.3 OOM OOM 104.5

SDXL+BSRGAN 66.3 81.7 66.0 85.0 74.8
ScaleCrafter 79.9 95.5 115.1 153.3 111.0
DemoFusion 67.5 72.0 70.8 82.6 73.2

SDXL+Inf-DiT(Ours) 66.0 71.9 67.0 76.2 70.3

and randomly cropped 299 ⇥ 299 patches from high-resolution images for FID
evaluation.

The results in Tab. 2 demonstrate that our model achieves state-of-the-art
(SOTA) in three out of four metrics. This showcases our model’s exceptional
ability to generate high-resolution details and harmonious global information.
Note that our model is capable of being applied to all generative models. Ex-
amples from other models are listed in the Appendix D. We have also evaluated
the model’ time-space consumption in Appendix A.

Super-Resolution In addition to its ability to generate high-resolution im-
ages, Inf-DiT can also be used as a classic super-resolution model. We conduct
the evaluation on DIV2k valid dataset [1] which contains multiple real-world
high-resolution images in different scenarios. Following [21, 24], we fix image
degradation to bicubic interpolation with 4⇥ downsampling. Before comparing
with fix-resolution models LDM [21] and StableSR [29], we center-crop specific-
sized patches from the high-resolution image as ground truth. Throughout this
process, we utilize both perceptual (FID, FIDcrop) and fidelity (PSNR, SSIM)
metrics to ensure a detailed and comprehensive assessment.

As demonstrated in Tab. 1, our model achieves state-of-the-art across all
metrics. This shows that, as a super-resolution model, ours not only excels in
performing super-resolution at arbitrary scales but also preserves global and
detailed information while restoring results that closely resemble the LR images.

3.3 Human Evaluation

To further evaluate Inf-DiT and more accurately reflect its generative quality
from a human perspective, we conduct a human evaluation. The whole evaluation
process is detailed in Appendix C. We ultimately collected 3,600 comparisons.
As depicted in Fig. 7, our model outperforms the other 3 methods in all the
3 criteria. It is particularly noteworthy that each of the other three models
ranks relatively lower on at least one of the three evaluation criteria, while Inf-
DiT achieves the highest score on all three criteria: detail authenticity, global
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Fig. 7: Human evaluation results. After participants rank the images from different
models, We assign scores from 4 to 1 to models in order and finally calculate the
average of all the results. Inf-DiT gets the highest scores in all three categories.

coherence, and consistency with low-resolution input. This indicates that our
model is the only one capable of excelling in both high-resolution generation
and super-resolution tasks simultaneously.

3.4 Iterative Upsampling

Since our model can upsample images of arbitrary resolution, it’s a natural idea
to test if the model can iteratively upsample images generated by itself. In this
study, we experiment on generating a 20482 resolution image from a 322 resolu-
tion image , 64⇥ upscale, through three times of iterative upsampling. Figure 8
illustrates two cases of this process. In the first case, the model successfully
produces a high-resolution image after three stages of upsampling. It generates
details of different frequencies in different resolution upsampling: the contour of
the face, the shape of the eyeball, and individual eyelashes. However, it is hard
for the model to correct inaccuracies generated in earlier stages, leading to the
accumulation of errors. An example of this issue is demonstrated in the second
sample. We leave this problem for our future work.

Table 3: Ablation study on 2048⇥ 2048 resolution.

Method FID FIDcrop

Ours 66.0 71.9
w/o Nearby LR Attention 66.7 73.6

w/o Semantic Input 66.2 72.8
Inner Block Attention 66.3 83.7

Block Size 32 64 128 256 512

Memory Usage (GB) 23.3 23.3 23.3 23.5 23.7
FID 276 271 268 265 246

Inference Time (s) 57 61 69 112 269

3.5 Ablation Study

We conduct all ablation studies with 20482 resolution on HPDV2 dataset, with
results in Tab. 3. To verify our method, we separately 1. remove the Global
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Fig. 8: Generated samples of iterative upsampling. Top: Inf-DiT can upsample an
image generated by itself several times, and generate details of different frequencies
at corresponding resolution. Bottom: After failing to generate a pupul at the 1282

resolution, it is difficult for subsequent upsampling stages to correct this error.

Input, 2. remove Nearby LR attention and 3. remove the attention between
blocks (Inner Block Attention setting). As a result, both the FID and FIDcrop
of the model get worse to varying degrees. We also conduct an ablation study
to decide the optimal block size. The results show that as block size increases,
the performance improves, but the time also increases. To trade-off, we chose
128 as the default setting. Further case studies and analysis are listed in the
Appendix B.

4 Related Work

4.1 Diffusion Image Generation

Diffusion models have emerged as a spotlight in the realm of image generation,
boasting an array of groundbreaking advancements in recent years. Initially in-
troduced in 2015 [26], and further developed through works such as DDPM [11]
and DDIM [27], these models leverage a stochastic diffusion process, conceptu-
alized as a Markov chain, to convert a simple prior distribution, like Gaussian
noise, into a complex data distribution. This methodology yield impressive out-
comes in terms of the quality and diversity of generated images.

Recent enhancements have markedly elevated the generation capabilities of
diffusion models. CDM [12] creates a cascade generation pipeline with multistage
super-resolution models, which can be applied to large pretrained models [20,23].

The introduction of Latent Diffusion Models (LDMs) [18, 21] represents a
pivotal extension, incorporating a latent space to boost both efficiency and scal-
ability. Alongside these advancements, there has been significant progress in
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the optimization of network architectures. The advent of Diffusion Transformers
(DiT) [17] Replaces U-Net with ViT [6] for noise prediction.

4.2 Image Super-Resolution

Given a low-resolution (LR) image ILR degraded from high-resolution (HR)
observation IHR, image super-resolution (SR) aims to reconstruct a HR one
ÎHR: ILR = D(IHR; �), ÎHR = F (ILR; ✓). Here D and F refer to degradation
process and the super-resolution model. � and ✓ represent the parameters. In
recent years, Blind SR has been a major focus, in which the degradation process
is unknown and learnable. The representative methods are BSRGAN [33] and
Real-ESRGAN [30]. Recently, diffusion-based SR methods have yielded excit-
ing results. These works focus on finetuning pre-trained text-to-image diffusion
models to take advantage of their excellent generative ability. Specifically, Diff-
Bir [16] employs ControlNet [34] on pre-trained stable-diffusion models, whereas
PASD [32] enhances it by executing pixel-aware cross-attention. Both approaches
have garnered considerable success in fixed resolution super-resolution but can-
not be directly used for higher resolution.

4.3 Ultra-High-Resolution Image Upsampler

Currently, image generation methods fall short in generating ultra-high-resolution
images owing to the constraints of memory and issues with training efficiency.
Under these circumstances, MultiDiffusion [2] and Mixture of Diffusers [14] bind
together multiple diffusion generation processes by dividing images into overlap-
ping blocks, processing each separately, and then stitching them together, aiming
to maintain continuity between blocks. However, because they only used the lo-
cal weighted averaging for aggregation, it leads to a low interaction efficiency
and makes it difficult to ensure the global consistency of the images.

Given this concern, DemoFusion [7] and ScaleCrafter [9] adapt dilated policies
including dilated sampling and dilated convolution kernels, aiming at acquiring
more global information. These methods indeed achieve improvement on a global
semantic level without additional training. However, the huge difference between
training and generation leads these methods to easily produce illogical images.

5 Conclusion

In this work, we observe that the major obstable to generating ultra-high-
resolution images is the substantial memory occupied by model hidden states.
Based on this, We propose Unidirectional Block Attention mechanism (UniBA)
which can lower the space complexity by performing batch generation among
blocks. With UniBA, we train Inf-DiT, a 4⇥ memory-efficient image upsam-
pler which achieves state-of-the-art performance in both generation and super-
resolution tasks.
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