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Abstract. Since the introduction of NeRFs, considerable attention has
been focused on improving their training and inference times, leading to
the development of Fast-NeRFs models. Despite demonstrating impres-
sive rendering speed and quality, the rapid convergence of such models
poses challenges for further improving reconstruction quality. Common
strategies to improve rendering quality involves augmenting model pa-
rameters or increasing the number of sampled points. However, these
computationally intensive approaches encounter limitations in achieving
significant quality enhancements. This study introduces a model-agnostic
framework inspired by Sparsely-Gated Mixture of Experts to enhance
rendering quality without escalating computational complexity. Our ap-
proach enables specialization in rendering different scene components by
employing a mixture of experts with varying resolutions. We present a
novel gate formulation designed to maximize expert capabilities and pro-
pose a resolution-based routing technique to effectively induce sparsity
and decompose scenes. Our work significantly improves reconstruction
quality while maintaining competitive performance.

1 Introduction

Neural Radiance Fields (NeRFs) [24] have recently shown impressive results
in synthesizing photo-realistic 3D scenes from a set of 2D images. However,
NeRFs suffer from limited scene diversity, long training time, and sensitivity to
training data [21]. Since the introduction of NeRFs, significant attention has
been directed toward improving their training and inference times, resulting
in the development of Fast-NeRFs. By using auxiliary data structures such as
voxel grids to store scene geometry and skip empty spaces, the training and
inference process can be accelerated by several orders of magnitude. As a result,
the neural component of these models, which is usually used to transform learned
features into view-dependent color representations, becomes much smaller and
can sometimes be replaced entirely by spherical harmonics [10]. Despite Fast
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Fig. 1: Different strategies for improving reconstruction quality with Fast-NeRFs
(DVGO [29]). Increasing the resolution of data structures like voxel grids can im-
prove render quality, but only up to a certain point, after which quality declines (left).
The MLP component’s impact on rendering quality is analyzed by varying its depth
and width while keeping other variables constant (center). The effect of the number of
sampled points along each ray is examined by decreasing the step size (right). In gray,
our method’s performance, which significantly improves PSNR at a low computational
cost.

NeRFs being an improvement from the original NeRF framework, achieving high-
quality and efficient reconstructed geometry is still an open problem.

Typical “naive” approaches to enhance the reconstruction quality of these
models include:

1. Increasing the parameters and resolution of the used data structures (e.g.,
voxel grid, hash grid, etc.).

2. Increasing the number of sampled points per ray.
3. Increasing the number of parameters in the neural network or the order of

spherical harmonics.

However, as evident from Figure 1, the increase in reconstruction quality results
in a significant increase in computational costs. In the first approach, increasing
the resolution can lead to a significant improvement in the reconstruction quality,
but a plateau is reached beyond which overfitting occurs, and reconstruction
quality degrades. This comes at the expense of a considerable increase in spatial
complexity (especially with dense voxel grids) and training times. Increasing the
number of sampled points per ray can marginally improve reconstruction quality
further but at a significant increase in computational complexity. In fact, the
higher the number of sampled rays, the higher forward passes through a neural
network are needed. Augmenting the number of parameters in the neural network
is another solution. However, as the neural network grows in depth and width, it
tends towards a fully implicit model, deviating from the principles of fast models
(limiting the neural part as much as possible - or even removing it altogether).

We propose a technique capable of significantly enhancing the reconstruction
quality of such models while maintaining competitive training and rendering
times. Inspired by the Sparse Mixture of Experts (MoE) paradigm [28], we have
developed a model-agnostic framework capable of improving the reconstruction
quality of various state-of-the-art models. Intuitively, our mixture of experts
consists of different-capacity (resolution) models. During training, each model
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specializes in rendering the most suitable parts of the scene, i.e. low-resolution
models render low-frequency parts of the scene, while high-resolution models
render high-frequency parts. Our formulation of the gate allows our method to be
model-agnostic, enabling, on the one hand, the insertion of the gate function at
the early stages of the MoE mechanism and, on the other hand, the multiplication
of the gate’s output with the experts’ output as late as possible. This maximizes
the capabilities of the mixture of experts and allows for working directly with the
output of each expert, which is considered a black box. This is why our method
is inherently model-agnostic. In summary, our contributions are as follows:

1. We propose the first model-agnostic framework based on Sparse MoE of
models at different resolutions, which significantly improves the rendering
quality of such models while maintaining competitive training and inference
times (Sec. 3).

2. We provide a novel gate formulation inspired by Fast-NeRF models, which
maximizes the capability of the mixture of experts (Sec. 3.3).

3. We introduce a new routing technique based on resolution, favoring the as-
signment of tokens to low-resolution models and discouraging the assignment
of tokens to high-resolution models, inducing increasing sparsity in high-
resolution models and decomposing the scene based on frequency (Sec. 3.5).

4. We conduct extensive experiments to test our method, including different
NeRFs architectures and datasets, showing higher rendering quality and ef-
ficiency (Sec. 4).

2 Related works

2.1 Neural Radiance Field

NeRF [24] (Neural Radiance Field) has emerged as a prominent method for
synthesizing novel views, showing significant progress. This approach requires a
moderate number of input images along with their known camera poses. Unlike
traditional methods that rely on explicit and discretized volumetric representa-
tions such as voxel grids and multiplane images, NeRF employs a coordinate-
based multilayer perceptron (MLP) to create an implicit and continuous volu-
metric representation. NeRFs can represent a 3D scene as a MLP Fθ, with θ
being the set of its trainable parameters, such that Fθ : (x,d) → (c, σ) which
maps (x,d), a 3D position x and a viewing direction d, to a view-dependent
color emission c and density value σ. To render the color of a pixel Ĉ(r), a ray
r traverses the center of the camera through the pixel of the image plane from
an origin point o to a ray having position r(t) = o + td. Then, N points are
sampled on r, and the MLP is queried for each point, obtaining a density and
a color value. Finally, these results are accumulated into a single color with the
volume rendering equation [22]:

Ĉ(r) =

K∑
i=1

Tiαici, Ti =

i−1∏
j=1

(1− αj), αi = 1− exp(σiδi), (1)



4 F. Di Sario et al.

where αi is the probability of termination at point i and Ti is the accumulated
transmittance from the near plane to point i. NeRFs are trained by minimizing
a photometric loss, which is an L2 loss between the rendered and the ground
truth pixels. In more detail, given a batch B of randomly sampled rays, the loss
is defined as

Lnerf =
1

|B|
∑
r∈B

∥∥∥Ĉ(r)− C(r)
∥∥∥2
2
, (2)

where Ĉ(r) is the predicted color and C(r) the ground truth color for the
ray r.

2.2 Fast Neural Radiance Fields

Since the introduction of NeRF, significant effort has been directed towards
the development of faster models. Several studies focus on speeding up render-
ing times, for example by working on ray sampling efficiency [3, 6, 12, 37], by
integrating explicit volumetric representations [5, 11, 11, 15, 31–33] or by utiliz-
ing thousands of tiny MLPs [26]. However, all these methods still require large
training times. One noteworthy development is represented by the introduction
of explicit volumetric representations in the training pipeline, directly optimizing
such representations [4,9,10,13,16,25,29]. These models enable fast training and
inference, with render quality only slightly inferior to full-implicit models [1, 2].
We refer to these as Fast-NeRFs. Plenoxels [10] is the first important work in
this context, as it represents a scene as a sparse 3D grid where each voxel stores
spherical harmonic coefficients and density. Spherical harmonics serve as an or-
thogonal basis for functions defined over the sphere and thus can be used for
computing view-dependent color emission, without the need for a multi-layer
perceptron. Additionally, Plenoxels demonstrated the advantages of linearly in-
terpolating voxels, facilitating the learning of a continuous plenoptic function
throughout the volume, akin to NeRF, albeit with discrete data. Another no-
table work is DVGO [29]. Each scene is there represented as two dense voxel
grids (one for density and one for feature colors) alongside a MLP, for learning
view-dependent color. Similar to Plenoxels, the value of each voxel is linearly in-
terpolated with the 8 nearest voxels, but after applying the activation functions.
DVGO also incorporates a preliminary coarse geometry stage to learn the scene’s
general structure, facilitating adjustments to the bounding box and enabling a
more intelligent ray sampling strategy. Despite utilizing lower-resolution models,
DVGO achieves high reconstruction quality. The major drawback of these mod-
els is their substantial memory storage requirements. TensoRF [4] addresses this
challenge by replacing the dense voxel grid with a planes and vectors decom-
position, significantly reducing storage demands while maintaining comparable
performance and rendering quality. Alternatively, Instant-NGP [25] proposed a
multi-resolution voxel grid encoded via a hash function. They define L hash
grids of increased resolutions: each entry of each hash grid has 2T parameters
and F features. This enables even faster training times and real-time rendering
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performances while maintaining a compact model; moreover, it demonstrates
the efficacy of a multi-resolution approach in enhancing render quality. Inspired
by this methodology, K-Planes [9] introduces a multi-resolution planar factor-
ization of 3D space, offering reconstruction quality and model compactness sim-
ilar to the previous methods, but with slightly larger training times. A similar
multi-resolution planar factorization has also been proposed in Tri-MipRF [13]
for mitigating the aliasing in distant or low-resolution views and blurriness in
close-up shots. Given their properties, we decided to evaluate our paradigm
using three different models: a 3D dense voxel grid-based model (DVGO), a de-
composed grid-based model (TensoRF), and a multi-resolution hash grid-based
model (Instant-NGP).

2.3 Mixture of Experts and Sparse MoE

The Mixture of Experts (MoE) paradigm [14] has gained prominence in various
machine learning applications. MoE consists of multiple expert networks, each
specializing in different regions of the input space, with a meta-network deter-
mining the contribution of each expert to the final prediction. Building upon the
MoE framework, Sparse Mixture of Experts [19,27,28,36] constitutes a scalable
and efficient variant. At the core of all Sparse MoE algorithms lies an assignment
problem between tokens and experts. One approach to tackle this is by approx-
imating the solution with a gating function, which learns to assign input tokens
to the most suitable experts. It typically comprises a linear layer, a softmax ac-
tivation, and a Top-K (where 1 ≤ K ≤ 2) operation, aimed at routing the input
token to only a subset of the experts. To balance the assignment across all the ex-
perts, auxiliary loss functions penalizing unevenly distributed routing are often
employed. This sparsity-inducing technique significantly reduces computational
overhead while preserving the expressive power of the MoE architecture.

2.4 MoE and NeRF

Combining the sparse mixture of experts’ paradigms with neural radiance fields
presents a non-trivial challenge. In recent research, Switch-NeRF [35] has been
introduced as a novel end-to-end large-scale NeRF with learning-based scene
decomposition. Inspired by Fedus et al . [8], they propose a full-implicit model
with an MLP-based gate comprising 4 layers with 128 neurons and a Top-1 func-
tion. However, their architecture is ad-hoc, and suffers from extensive training
times. This poses a challenge for us, as we aim to consider each expert as a black
box, taking a point in space and a direction as input and outputting radiance
and density values. Moreover, as the mixture comprises experts at different res-
olutions, we also aim to prioritize routing input tokens toward lower-resolution
models and minimize the usage of high-resolution models.

Our work intends to overcome these limitations. We design a novel gate
formulation inspired by Fast-NeRFs, that guarantees fast convergence and better
performances. We position the gate at the beginning of our MoE pipeline and
postpone the multiplication of the gate output with expert predictions as much as
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Fig. 2: A density field is used to compute density values for sampled points along
a ray. A filtering step discards low-density points, routed through gating network G
for expert assignment. Top-K experts compute radiance and density, aggregating and
weighting these values by the corresponding gating probability to get the final values
cf and σf . Volume rendering equation yields pixel colors, and joint optimization refines
our resolution-weighted auxiliary loss, allowing for high-quality and efficient rendering.

possible. This allows our framework to be entirely model-agnostic. Furthermore,
our mixture of experts maintains competitive training times, enabling, in the
worst case, training models on complex scenes in approximately 1 hour while
achieving state-of-the-art accuracy.

3 Method

In this section, we introduce our model-agnostic ensembling approach. We present
in Sec. 3.1 an overview of our method. We also describe the ray sampling and
filtering mechanism in Sec. 3.2. Then, in Sec. 3.3, we discuss the effective con-
struction of a mixture of experts with a gating mechanism in the context of
NeRF. Finally, in Sec. 3.5, we present a novel formulation for decomposing the
scene into resolution-based parts with an end-to-end training procedure.

3.1 Overview

Figure 2 shows a high-level scheme of our method. After independently training
a set of M NeRF models {Ei}Mi=1 at different resolutions, we sample N points
along a ray r. For each point xp, a density value σ is calculated, and based on
this, a filtering step is performed based on the density volume VD, discarding
points in regions with a density below a certain threshold T . Initializing the
density volume VD with the one learned from the lowest resolution model can
be helpful (though it can also be learned). Subsequently, the filtered point xf

is fed to the gate G, so we denote with G(xf ) the probabilities with which the
point is assigned to the M experts. Based on these values, each point is routed
to the Top-K experts. Each selected expert then computes the radiance ci,f and
density values σi,f for the point, both of which are multiplied by their respective



Boost Your NeRF 7

probabilities and summed together to get the final radiance cf and density σf .
Subsequently, the volume rendering Equation 1 is used to aggregate all colors
and compute the pixel color for the given ray. Finally, we compute the total loss
and jointly optimize the gate and the experts.

In the next sections, we will dive into the gating and sparse mixture of expert
modules.

3.2 Ray Sampling and Filtering

The first phase of our method involves learning a coarse and explicit density field
starting from the density volume VD, that we can leverage for skipping empty
spaces. Given a ray r as explained in Sec. 2.1, we sample N points along it:

Xp,r = sampling(r) ∈ RN×3, (3)

with p ∈ [0, ..., N − 1]. We suppress the index r for abuse of notation. Next,
we compute the density for each point xp ∈ R3 and discard those with neg-
ligible density. The density value σD,p for each point is computed by linearly
interpolating v neighboring voxels:

σD,p = act(interpolate(xp, VD)) ∈ R (4)

where act represents a density activation function (such as softplus). We denote
with xf ∈ R3 a remaining point after the filtering operation.

3.3 Trainable Gating Model

Our gating mechanism incorporates a hybrid architecture: an explicit feature grid
VG and a shallow MLP. The gating mechanism can also be seen as a probability
field. First, we compute per-point features:

feat = interpolate(xf ,VG) ∈ RC (5)

where C represents the number of channels of VG. Subsequently, we transform
each feature into a probability. We compute logits as

logits = MLP(feat) ∈ RM (6)

where M is the number of experts in the mixture of experts. Finally, we apply
a per-row softmax. Our gating function can be summarized as:

G(xf ) = softmax(MLP(interpolate(xf ,VG))) ∈ RM (7)
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3.4 NeRFs Experts

As mentioned in Sec. 3.1, we employ a set of M pretrained NeRFs models as
experts. After feeding as input each point xf to the gate, we route them to the
k experts with the k highest probabilities G(xf ). We define this set of indexes
of the selected experts as

K = argmax
Top−k

(G(xf )). (8)

Each expert is a Fast-NeRF model that receives the dispatched points and the
direction of the ray they lie on as input and outputs a density and a radiance
value. We treat each expert as a black box, ensuring our method is inherently
model-agnostic. The radiance cf and the density σf for the point xf laying on
a ray with direction d can be expressed as the sum of each expert predictions
weighted by their probability:

cf , σf =
∑
i∈K

Ei(xf ,d) ·G(xf )i (9)

where Ei denotes the i-th expert and G(xf )i the probability for the point to
be dispatched to that expert i.

Once we obtain radiance and density values for all the points on the ray, we
can compute the pixel color with Equation 1.

3.5 Resolution-based Routing

To balance the load and prevent the gate from focusing on assigning points
to a single expert (typically the one with the highest resolution), we employ a
resolution-weighted auxiliary loss. Given M experts, and a batch of points B,
the auxiliary loss is defined as:

Laux =
M

|B|2
M∑
i=1

cimi, mi =
∑
xf∈B

G(xf )i, (10)

where ci represents the number of inputs dispatched to the expert i, and mi

is the sum of all the probabilities for each point in the batch for the expert i. This
loss helps balance the workload, ensuring that each expert processes a similar
number of points. Ideally, in a perfectly balanced scenario, Laux is expected to
be 1, as both ci and mi would be M

N , resulting in
∑M

i=1 cimi being M2

N . However,
in the case of total imbalance, it tends to the number M . We aim to take a step
further by assigning as many points as possible to low-resolution experts while
discouraging point assignment to high-resolution models. Hence, we introduce
some penalty terms wi associated with each expert. The higher the resolution of
the model, the higher the penalty. We define a novel resolution-based auxiliary
loss:

Lrw-aux =
M

|B|2
M∑
i=1

cimiwi. (11)
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As for the weighting strategy, we opted for the following geometric progres-
sion. The weight wi for the i expert is computed as:

wi = exp

(
lnM

M − 1

)i

, i ∈ [0, ...,M − 1]. (12)

The total loss is then defined as:

Ltot = Lnerf + λLrw-aux. (13)

As we will see in Sec. 4, our proposed loss not only further improves the re-
construction quality but also encourages sparsity in higher-resolution models. A
comparison with other weighting strategies is proposed in the Supplementary ??.

4 Experiments

4.1 Setting

The code was written in Python 3.8, using PyTorch 1.12, and executed on a sin-
gle NVIDIA A40 GPU. We tested our technique on the DVGO, TensoRF, and
Instant-NGP architecture. The code from official repositories was used as the
starting point. For Instant-NGP, the native implementation in PyTorch ngp_pl
was employed, which exhibits comparable performance and reconstruction qual-
ity to the official NVIDIA implementation. We experimented with various con-
figurations, ranging from a minimum of 3 models to 5 models of different reso-
lutions. The experts are ordered by resolution, such that the i+1-th expert has
approximately double the parameters of the i-th expert. For all configurations
and models, λ was set to 10−3. The Gate consists of a grid (dense voxel grid
for DVGO, factorized grid for TensoRF, and hash grid for Instant-NGP) and a
shallow MLP (2 layers with 64 neurons each) with ReLU activation function.
The resolution of the gate is low: 1283 for both DVGO and TensoRF, while for
Instant-NGP we used L = 6. The number of iterations is set to 20k for all the ar-
chitectures. All other hyperparameters are left as the original implementations.
We draw experiments with our method using Top-k experts, with k = 1 and
k = 2. We compare our results versus baselines with comparable resolutions, as
well as a Fast-NeRF ensemble (Ens) obtained by jointly fine-tuning all models
and averaging their predictions. It can be noted that this ensemble can be inter-
preted as a limit case for our method with k = M and G(xf )i = 1/M,∀i similar
to the method proposed by [7].

4.2 Metrics and Datasets

For each test, image-quality metrics such as PSNR, SSIM [30], and LPIPS [34]
(computed on AlexNet [18]) are presented. Additionally, we report the number
of non-zero parameters as ∥w0∥, the average GFLOPs required by each model
to render the images of the test set, and total training times. We present results
obtained across four major datasets, namely: Synthetic-NeRF [24], Neural Sparse
Voxel Field Dataset (NSVF) [20], TanksAndTemple [17], and Local Light Field
Fusion Dataset (LLFF) [23].
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Table 1: Results on DVGO, TensoRF and Instant-NGP with M = 5. ∥w∥0 is expressed
as multiple of 106, while for Instant-NGP as a multiple of 105.

Dataset Metrics DVGO TensoRF Instant-NGP
baseline Top-1 Top-2 Ens baseline Top-1 Top-2 Ens baseline Top-1 Top-2 Ens

Blender

PSNR ↑ 33.04 33.43 33.74 33.79 32.98 33.68 34.09 34.00 33.35 33.56 33.83 34.01
SSIM ↑ 0.961 0.964 0.965 0.966 0.958 0.965 0.968 0.968 0.963 0.963 0.965 0.966
LPIPS ↓ 0.026 0.024 0.022 0.022 0.029 0.023 0.021 0.022 0.025 0.045 0.043 0.042
∥w∥0 ↓ 99 26 39 97 40 24 33 49 31 17 21 26

GFLOPs ↓ 635 499 940 2206 886 732 1344 2214 46 71 123 208
Time ↓ 26’ 21’ 25’ 32’ 44’ 69’ 76’ 70’ 11’ 32’ 34’ 37’

NSVF

PSNR ↑ 35.21 37.12 37.59 37.68 36.70 37.40 37.98 38.08 36.44 33.59 37.04 37.31
SSIM ↑ 0.977 0.984 0.986 0.986 0.981 0.984 0.986 0.987 0.983 0.983 0.984 0.985
LPIPS ↓ 0.015 0.009 0.008 0.007 0.013 0.009 0.008 0.008 0.010 0.023 0.022 0.020
∥w∥0 ↓ 95 27 43 100 42 28 38 54 30 17 20 27

GFLOPs ↓ 564 430 811 1903 706 575 1053 1763 28 52 72 123
Time ↓ 12’ 22’ 25’ 30’ 46’ 75’ 75’ 75’ 10’ 31’ 33’ 34’

TaT

PSNR ↑ 28.93 29.14 29.27 29.37 28.44 28.78 29.14 29.11 29.07 29.16 29.32 29.38
SSIM ↑ 0.927 0.925 0.929 0.932 0.905 0.924 0.929 0.928 0.924 0.927 0.929 0.930
LPIPS ↓ 0.107 0.108 0.105 0.103 0 0.106 0.099 0.109 0.101 0.125 0.124 0.121
∥w∥0 ↓ 74 16 26 65 7 9 15 80 88 37 47 70

GFLOPs ↓ 2666 1626 3066 7198 3567 2791 5126 9146 211 229 531 1003
Time ↓ 22’ 25’ 28’ 38’ 72’ 70’ 78’ 101’ 14’ 37’ 39’ 45’

LLFF

PSNR ↑ 26.24 26.43 26.62 26.65 26.71 26.73 27.09 27.10 24.97 24.90 25.17 25.19
SSIM ↑ 0.831 0.832 0.839 0.843 0.835 0.836 0.862 0.864 0.764 0.763 0.777 0.778
LPIPS ↓ 0.136 0.115 0.111 0.107 0.114 0.111 0.101 0.101 0.128 0.239 0.237 0.234
∥w∥0 ↓ 62 26 40 113 19 11 16 23 152 68 75 148

GFLOPs ↓ 1678 1514 2508 4972 4542 3226 5921 13522 573 887 1391 2712
Time ↓ 24’ 28’ 32’ 36’ 58’ 49’ 57’ 68’ 24’ 25’ 46’ 42’

4.3 Quantitative Results

The main experimental results in terms of the metrics defined above are shown in
Table 1. Here, we present the results obtained using a mixture of M = 5 experts;
further configurations can be found in the supplementary Sec. ??. Our experi-
ments reveal that our MoE provides a significant rendering quality improvement
with respect to the baseline with no or limited impact in terms of computational
cost. The increase in rendering quality is notable in Synthetic NeRF (up to 1
dB) and NSVF (up to 1.3 dB). Although more moderate, improvements are still
evident, even in more challenging datasets such as TanksAndTemple and LLFF,
with about 0.5 dB gain. While Top-1 can already achieve state-of-the-art render
quality, the Top-2 strategy further enhances image quality, reaching levels com-
parable to the ensemble but with much greater efficiency (about half the average
FLOPs per rendering) and using significantly fewer parameters. This observa-
tion is also illustrated in Figure 3 , where FLOPS/PSNR plots are shown (each
marker in every curve refers to the cases with M = 3, 4, 5 experts respectively).
Training times are on average are longer but still acceptable (in the worst-case
scenario, around 1h is required to train our MoE). However, in the case of Top-
1, they can be faster than baselines. This is because of our resolution methods,
which tend to favor low-resolution models. Based on these analyses, the Top-2
strategy strikes an excellent quality/cost trade-off. The ensembling configura-



Boost Your NeRF 11

500 1000 1500 2000
GFLOPS

33.0

33.2

33.4

33.6

33.8

PS
NR

M=3

M=4

M=5

Synthetic-NeRF

Baseline
Top-1
Top-2
Ens

500 1000 1500 2000
GFLOPS

33.0

33.2

33.4

33.6

33.8

34.0

PS
NR

M=3

M=4

M=5

Synthetic-NeRF

Baseline
Top-1
Top-2
Ens

50 100 150 200
GFLOPS

33.2

33.4

33.6

33.8

34.0

PS
NR

M=3

M=4

M=5

Synthetic-NeRF

Baseline
Top-1
Top-2
Ens

1000 2000 3000 4000 5000 6000 7000
GFLOPS

28.6

28.8

29.0

29.2

29.4

PS
NR

M=3

M=4

M=5

TanksAndTemple

Baseline
Top-1
Top-2
Ens

(a) DVGO

2000 4000 6000 8000
GFLOPS

28.5

28.6

28.7

28.8

28.9

29.0

29.1

PS
NR

M=3

M=4

M=5

TanksAndTemple

Baseline
Top-1
Top-2
Ens

(b) TensoRF

200 400 600 800 1000
GFLOPS

28.9

29.0

29.1

29.2

29.3

29.4

PS
NR

M=3

M=4

M=5

TanksAndTemple

Baseline
Top-1
Top-2
Ens

(c) Instant-NGP

Fig. 3: PSNR/GFLOPs plots for Synthetic-NeRF and TanksAndTemple. The remain-
ing datasets show similar results.

tion, using all experts, represents an upper bound in terms of image quality
while being the worst case in computational terms.

4.4 Qualitative Results

Figure 4 shows visual comparisons among the baseline, ensemble, Top-1, and
Top-2. From the selected image crops, one can appreciate that our method
ensures superior reconstruction quality compared to the baselines, effectively
reproducing sharper details while reducing noise on texture-less spots. This is
particularly notable when examining elements such as the window decorations
in the Palace scene or the text on the box above the desk in the Room scene.
Additionally, surfaces such as the semi-transparent glass in the Wineholder or
the Caterpillar scene appear less noisy and more faithful to the original. This im-
provement can be attributed to the synergy among different resolution models:
low-resolution models excel at representing lower frequencies, thereby introduc-
ing less noise, while high-resolution models can focus solely on high-frequency
components. Additionally, it is important to notice that there is no significant
difference between the ensemble and Top-2.

4.5 Comparison with Naive Methods

As shown in Figure 1, our method leads to significantly higher quality reconstruc-
tions at a greatly reduced computational cost. Decreasing the step size yields
the least noticeable improvement while incurring a substantial computational
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GT Baseline Top1 Top2 Ensemble

Fig. 4: Qualitative results on some of the scenes of each dataset. From left to right:
ground truths, baselines, Top-1, Top-2 and Ensemble. Each model has the same pa-
rameters and has been trained for the same number of iterations (DVGO).

expense, as each sampled point requires an evaluation by the color decoder.
Our method achieves high-quality reconstructions with the same step size as the
baseline models. Increasing the MLP parameters can boost accuracy, but again,
the computational costs become substantial compared to our method. Similarly,
increasing resolution results in way inferior PSNR with respect to our method
at a comparable computational cost. Our method also allows scaling to higher
resolutions, while baseline models tend to introduce noise and artifacts, leading
to a decrease in reconstruction quality as the resolution increases.

4.6 Gate Visualization and Scene Decomposition

In Figure 5, we visualize the gate (probability field in grayscale) and each expert
output in the case M = 3. On the right side of the figure, one can appreciate
per-model renders and experts’ specialization. It is worth noting how higher-
resolution experts render high-frequency details. This is particularly evident in
the Mic scene.

4.7 Ablation

Here we investigate how different design choices of our model affect the perfor-
mance and rendering quality. These choices include the gate resolution, different
gate formulations, and the number of experts in the Top-k.
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Fig. 5: Gate (gray-scale images) and per-model output visualizations with 3 experts
and resolution-based routing (DVGO). Images are ordered by increasing resolutions.

Here we investigate how different design choices of our model affect the perfor-
mance and rendering quality. These choices include the gate resolution, different
gate formulations, and the number of experts in the Top-k.

Gate Resolution and Gate Formulation. We show in Table 2 that a low-
resolution gate is sufficient to achieve high-quality rendering. Interestingly, as
the gate resolution increases, there is a slight decrease in rendering quality dur-
ing testing, coupled with an increase in required FLOPs per image rendering
and number of parameters. We also compare various gating strategies, includ-
ing linear gating, the configuration proposed by Switch-NeRF, and our gate
formulation. Through experimentation, it becomes evident that our approach
outperforms others in terms of both render quality and performance, achieving
performances comparable to a linear gating function.

Why Top-2? Here we investigate the performance and rendering quality trends
with varying values of k. In Figure 6, we can see that while k = 1 can lead
to a significant increase in quality with comparable performance to baseline
models, the Top-2 further enhances quality at the expense of increased (but still
acceptable) computation. The Top-3, Top-4, and Top-5 provide marginal quality
improvements at a significantly higher computational cost. Hence, we consider
the Top-2 the optimal balance between performance and quality.
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Res Gate Type PSNR ∥w∥0 GFLOPs

1283 Ours 36.8 26 476
2563 Ours 36.77 33 601
3003 Ours 36.79 42 677

- Linear 36.25 24 444
- Switch-NeRF 36.44 25 1095

Table 2: Comparison of different
gate resolutions and formulations
on Lego scene and DVGO.

500 1000 1500 2000
GFLOPS

33.2

33.4

33.6

33.8

PS
NR

M=3

M=4

M=5

Top-1
Top-2
Top-3
Top-4
Top-5
Ens

Fig. 6: Comparison of Gating Functions (Top-1
to Top-5) on Synthetic-NeRF with DVGO.

5 Limitations

Our study present some limitations. First of all, a pre-training phase, on which
each model is trained independently is required for achieving good results. Train-
ing end-to-end, without a pre-training phase, can lead to reconstruction quality
that is noticeably inferior to baselines. Pre-training models at different resolu-
tions allows for diversified architectures, making it easier for the gate to learn
the decomposition. The training is also strongly dependent on the auxiliary loss.
Different values of λ can significantly influence performances and load balancing.
We conducted a sweep to identify a value that works well across many scenar-
ios, but it may not be suitable for different datasets. Another limitation is the
overhead introduced by the MoE. Each input token is first interpolated with the
gate’s grid, decoded into probabilities and routed to the chosen expert. These
operations can significantly slow-down the rendering process, leading to higher
training and inference times. Although considerable effort was devoted to devel-
oping the most efficient gate possible, our MoE is still slower than the respective
baselines.

6 Conclusions

In this paper, we introduced a model-agnostic framework for enhancing the ren-
dering of Fast-NeRF models. Our formulation of the Gate reduces computational
costs in both training and inference phases while ensuring better quality com-
pared to a traditional gate. Additionally, the introduction of an auxiliary loss
with res penalty allows for increased utilization of low-resolution models, reduc-
ing the number of active parameters and promoting sparsity in higher-resolution
models. Our results demonstrate how this approach can significantly improve
reconstruction quality while considering performance metrics. Specifically, we
show that a Top-2 strategy strikes a good balance between performance and
quality.
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