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Abstract. Privacy laws like GDPR necessitate effective approaches to
safeguard data privacy. Existing works on data privacy protection of
DNNs mainly concentrated on the model training phase. However, these
approaches become impractical when dealing with the outsourcing of
sensitive data. Furthermore, they have encountered significant challenges
in balancing the utility-privacy trade-off. How can we generate privacy-
preserving surrogate data suitable for usage or sharing without a sub-
stantial performance loss? In this paper, we concentrate on a realistic
scenario, where sensitive data must be entrusted to a third party for
the development of a deep learning service. We introduce a straight-
forward yet highly effective framework for the practical protection of
privacy in visual data via veiled examples. Our underlying concept in-
volves segregating the privacy information present in images into two dis-
tinct categories: the privacy information perceptible at the human visual
level (i.e., Human-perceptible Info) and the latent features recognized
by DNN models during training and prediction (i.e., DNN-perceptible
Info). Compared with the original data, the veiled data conserves the la-
tent features while obfuscating the visual privacy information. Just like
a learnable veil that is usable for DNNs but invisible for humans, the
veiled data can be used for training and prediction of models. More im-
portantly, models trained with the veiled data can effectively recognize
the original data. Extensive evaluations of various datasets and models
show the effectiveness and security of the Veil Privacy framework.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable success across var-
ious scientific domains. The rapid development of DNNs [15, 39, 50] has greatly
benefited from the availability of openly accessible datasets (e.g ., ImageNet [5]).
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Fig. 1: The Veil Privacy framework and its application for visual privacy protection.
(1) Veiled Data Generation. The data owner generates the veiled data from the original
data via Veil Privacy and then shares them with the third party without visual privacy
leakage. (2) Application. The third party trains the DNN model using the shared veiled
data to provide deep learning services. Then the trained service model can effectively
predict not only the veiled data but also the original data during the testing phase.

However, datasets may contain users’ private information (e.g ., biomedical fea-
tures). Privacy regulations (e.g ., GDPR [13] and CCPA [33]) mandate the adop-
tion of effective measures to safeguard data privacy. Therefore, it’s imperative
to propose a framework that empowers service providers to leverage the data
collected from users in a privacy-preserving manner. Images play a pivotal role
in training DNNs to deliver computer vision services [20, 27, 49]. Nevertheless,
most images include sensitive privacy-related content, e.g ., individuals’ faces.

There have been some works on privacy protection for images [29, 35, 36].
However, they have generally overlooked the model’s capacity to recognize the
original data. Our focus is directed toward a realistic scenario, where sensitive
data have to be outsourced to build deep learning services. To illustrate this,
consider a situation in which a company, in the context of implementing a face
recognition-based access control system, gathers facial images of its employees
and delegates the training of a face recognition model to a third party. Given the
personal nature of facial data and the uncertainty surrounding the third party’s
future data handling, the company is reluctant to share the data directly. This
underscores the challenge of ensuring data security while facilitating its use and
sharing. Existing works, including dataset distillation [41], have encountered sub-
stantial difficulties in striking a balance between utility and privacy. Therefore,
the central question posed is: How can we generate privacy-preserving surrogate
data suitable for usage or sharing without a significant loss in performance?

In this paper, we propose a practical approach Veil Privacy to safeguard
the privacy of visual data (e.g ., images) via veiled examples. Our objective is
to render the data suitable for training and inference of DNNs while impercep-
tible to human observers—akin to a learnable veil. We categorize the privacy
information present in images into two distinct dimensions: human-perceptible
info which means privacy info discernible at the human visual level, and DNN-
perceptible info, i.e., latent features utilized by DNN models during training and
inference. As illustrated in Fig. 1, the Veil Privacy framework introduces a highly
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effective methodology to generate a privacy-preserving variant of unprotected
data, called veiled data. The primary aim is to conceal the human-perceptible
info while minimally affecting the DNN-perceptible info. The framework com-
prises two main steps. Initially, we devise random pixel flipping to magnify the
visual distinction between the veiled data and the original data. Subsequently,
we propose a gradient iteration algorithm to preserve latent features that DNN
models can recognize from the original data. The resultant veiled data no longer
discloses visual privacy. Due to the preservation of similar latent features, mod-
els trained using the veiled data not only recognize the veiled data but also the
original data. In summary, we make the following key contributions:

• This study represents the first instance in which privacy information within
images is systematically classified into two distinct categories: privacy in-
formation discernible through human visual perception and latent features
recognized by models during the training and testing phases.

• We provide a comprehensive overview of prior research on the privacy-
preserving of publicly accessible images. Additionally, we identify distinct
attributes and limitations associated with these strategies. As last, we ad-
dress a compelling question: How can we generate surrogate data that safe-
guards privacy during utilization or sharing, while minimizing the impact on
performance?

• To render data suitable for learning while concurrently rendering it imper-
ceptible, we propose a practical framework, Veil Privacy, for safeguarding
the privacy of visual data via veiled examples. This framework generates the
veiled data by developing a combination of random pixel flipping and the
gradient iteration algorithm. In contrast to the original data, the veiled data
retains latent features while concealing visual privacy information.

• Comprehensive experiments conducted across various datasets and diverse
models substantiate the effectiveness and security of the Veil Privacy frame-
work. More importantly, models trained with the veiled data can effectively
recognize the original data. Overall, as a pioneering work, this work provides
the key technical support for customized AI security services on visual data.

2 Related Work

There has been a line of work has emerged concerning the protection of pri-
vacy in images [19, 23, 40]. Leveraging our defined privacy categories and con-
sidering a delicate balance between utility and privacy, we classify these prior
works into three distinct categories: adversarial perturbation, encryption com-
puting and privacy elimination. Further, we also regard dataset distillation as an
approach for intuitive comparison. As shown in Tab. 1, these works offer privacy
protection from various angles, employing a diverse range of methodologies.

Adversarial perturbation disrupts training or prediction of DNN mod-
els by subtle perturbations. In order to avoid disclosing personal privacy, it
prevents the unauthorized acquisition of latent features. Consequently, adver-
sarial perturbation techniques damage DNN-perceptible info within the origi-
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Table 1: Key differences between Veil Privacy and existing methodologies. Veil Privacy
presents some desired merits: it ensures the veiled data unperceptible to humans while
perceptible to DNNs, and the feature space closely aligns with that of the original data.
Functionally, Veil Privacy enhances model performance and remains compatible with
the original data, allowing seamless switching from both veiled and original data.

Methodology Characteristic Functionality

Human-perceptible Info DNN-perceptible Info Feature Space Model Performance Original Data

Adversarial Perturbation Unprotected Damaged Unaligned ✗ ✗

Encryption Computing Protected Intact Unaligned ! ✗
Privacy Elimination Protected Damaged Unaligned ✗ ✗

Dataset Distillation Protected Partially Intact Aligned Partially ! ! –

Veil Privacy Protected Intact Aligned ! !

nal data, thereby enhancing privacy protection, while concurrently preserving
human-perceptible info due to the minimal magnitude of adversarial perturba-
tions. Wang et al . [37] secures private latent features by fooling the recognition
algorithm, where well-designed masks make it difficult for adversaries to discern
their presence. They also introduce an adversarial fusion algorithm [38], which
alters the feature distribution of original images through perturbations with-
out visually significant differences. Yang et al . [44] design a pivot pixel noise
generator (PPNG), which generates tiny noise on images to provide privacy pro-
tection, thwarting DNN models from correctly labeling perturbed images. All
these works [21, 22, 28, 37, 38, 43, 44] consider the potential features that DNN
models can utilize while overlooking the preservation of visual privacy informa-
tion, which is the most intuitive privacy for individuals.

Encryption computing achieves training and prediction of DNN models
on encrypted data directly. Sensitive data pose a distinct challenge due to their
inherent privacy considerations. Consequently, encryption computing simultane-
ously transforms both human-perceptible info and DNN-perceptible info of the
original data. However, models trained on encrypted data remain challenging
for inferring the original unencrypted data. Lee et al . [18] apply the bootstrap-
ping technique from RNS-CKKS to DNN models, which enables the evalua-
tion of arbitrary models on encrypted data while preserving privacy. Helena
et al . [24] mention that privatize the identity for the human eyes but retain
the utility for clinical. Pixel-based encryption [32] effectively facilitates training
and inference for classification models with covert images. However, these ap-
proaches [2, 7, 12, 14, 18, 24, 30, 32] share a common limitation: they focus solely
on training and inference with encrypted data. Yet, a practical concern arises as
most post-deployment models finally encounter original data in real scenarios.

Privacy elimination focuses on how to identify and eliminate privacy in
data without considering the training and prediction of DNN models. It eradi-
cates both human-perceptible info and DNN-perceptible info within the original
data. During the collection of public images, certain elements such as license
plates, faces and other private information are considered sensitive. This infor-
mation needs to be eliminated by some methods. Uittenbogaard et al . [34] intro-
duce an alternative-blurring framework designed to automatically remove and
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rectify specific sensitive objects in street-view imagery. Iprivacy [47] is devised
to accomplish swiftly and accurately detecting privacy-related information, im-
plementing privacy protection measures through obscuration. Frome et al . [10]
combine standard sliding-window ways with rapid post-processing, actively iden-
tifying and blurring individuals’ faces in Google Street View. However, it’s worth
noting that all of these approaches are primarily focused on eliminating privacy-
related information from data, not suitable for integrating into DNN models.

Dataset distillation aims to distill a large dataset into a synthetic smaller
dataset for improving the data efficiency when training DNN models, not aiming
for privacy protection. The synthesized small dataset achieves similar effects to
the original dataset for training and prediction of DNNs. Dataset distillation
keeps DNN-perceptible info at the dataset level and changes human-perceptible
information to a certain extent at the sample level. There have been some ex-
cellent works of dataset distillation, such as [3, 25, 26]. Further, Dong et al . [8]
apply dataset distillation for privacy protection of images. However, these works
inevitably reduce predictive performance on the original data. And there are still
issues of high similarity between the synthetic data by distillation and the orig-
inal data, as well as high time complexity from the distillation process. Dataset
distillation is performed at the dataset level. If there is a need for adding a new
sample, it requires incorporating a new sample into the original dataset and re-
distilling the entire dataset. Therefore, dataset distillation has not truly achieved
the balance between utility and privacy.
Summary. The existing works grapple with significant challenges in balancing
between utility and privacy. How can we generate privacy-preserving surrogate
data for utilization or sharing without substantial performance degradation? As
presented in Tab. 1, we introduce an innovative approach Veil Privacy, which
effectively preserves potential features for DNNs while concealing visual privacy
information for human observers, achieving a favorable utility-privacy trade-off.

3 Veil Privacy for Visual Data

3.1 Overview

Our goal is that human-perceptible info remains well concealed, while DNN-
perceptible info remains unaffected. Here, we provide the problem formulation
at the data owner level. Let u be a data owner who possesses data samples
(x1, y1),...,(xn, yn), where each sample has data x ∈ X and label y ∈ Y . Then
u generates privacy-preserving surrogate data with the same label for sharing.
The third party collects these surrogate data samples from u to train the service
model F̃ (·). It should be noted that F (·) and F̃ (·) can be different.

Specifically, Veil Privacy generates the veiled data X̃ from the original data
X. As shown in Algorithm 1, it primarily comprises two steps, i.e., (a) Random
Pixel Flipping RPF (·) is devised to conceal the visual privacy, with a specific
flipping ratio p; and (b) Gradient Iteration Algorithm GIA(·) is proposed to
retain the latent features, with a local model F (·) of the data owner.
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Algorithm 1 Veiled Data Generation
Input: Data X = {x1, ..., xn}, Label Y = {y1, ..., yn}, Flipping Ratio p and Local Model F (·)
Output: Veiled Data X̃
1: begin
2: X = Normalize(X)

3: Initialize X̃ with X
4: for every x̃i ∈ X̃ do
5: Initialize matrix m̃ with shape C × H × W from U(0, 1)
6: for i in range(0, W ∗ H ∗ C) do
7: m̃[i] = m̃[i] − p
8: m̃[i] = 1 if m̃[i] ≥ 0 else m̃[i] = −1
9: end
10: x̃i = x̃i × m̃ # Element-wise Multiplication
11: end
12: for every x̃i ∈ X̃ do
13: for t in range(0, T ) do
14: L(x̃i) = α · ∥F (x̃i) − F (xi)∥1 + β · (−1) · ∥x̃i − xi∥2

15: x̃i = x̃i − lr ∗ ▽x̃i
L(x̃i)

16: if L(x̃i) < ξ then break
17: end
18: end
19: X̃ = Renormalize(X̃)

20: return X̃
21: end

3.2 Random Pixel Flipping

The primary objective of Veil Privacy for visual data is to conceal privacy
information perceptible to human eyes effectively. To achieve this, we devise the
random pixel flipping RPF (·), which significantly enhances the visual dissimi-
larity between the veiled data X̃ and the original data X.

Initially, we normalize xi ∈ X via dividing by 255, following implementing
x−µ
δ with mean µ = 0.5 and standard deviation δ = 0.5. This preprocessing

transforms the range of pixel values from 0∼255 to -1∼1, for the convenience of
subsequent operations. Then we initialize X̃ with X.

The matrix m̃ is created with the same dimensions C ×H ×W . The values
within m̃ are randomly drawn from a uniform distribution U(0, 1), where values
are between 0 and 1. We define the flipping ratio p∼(0,1). As shown in Eq. (1),
we construct the random flipping mask m̃ by subtracting p and subsequently
transforming values less than zero to -1 and otherwise to 1. Afterward, we update
X̃ through element-wise multiplication between x̃i ∈ X̃ and m̃.

m̃[i] =

{
1, if m̃[i]− p ≥ 0

−1, if m̃[i]− p < 0
. (1)

The parameter p plays a crucial role in determining the extent of visual
disparity between X̃ and X. Experimentally, p = 0.5 is a good choice. The
detailed design choice for the selection of p can be found in Sec. 5.4.

3.3 Gradient Iteration Algorithm

Another objective is that the latent features recognized by DNN models
during training and prediction remain unchanged. To achieve this, we design the
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gradient iteration algorithm GIA(·), which constrains the latent features of the
veiled data X̃ to resemble those of the original data X closely.

We define the optimization problem presented in Eq. (2), where x̃i ∈ X̃,
xi ∈ X and F (·) denotes the local model trained using (X,Y ). F (xi) ⊂ Rn is
the output vector of F (·) for xi and n denotes the number of classes in Y .

minL(x̃i) = α · ∥F (x̃i)− F (xi)∥1 + β · (−1) · ∥x̃i − xi∥2. (2)

We opt for Stochastic Gradient Descent (SGD) to generate X̃. SGD itera-
tively updates x̃i ∈ X̃ in the direction opposite to the gradient ▽L(·) to identify
an optimal solution. We consider F (xi) as the explicit representation of the latent
features. By reducing ∥F (x̃i)− F (xi)∥1, the disparity of latent features between
x̃i and xi gradually diminishes, where L1 norm makes it easier to converge.
∥x̃i − xi∥2 ensures x̃ inconsistent with xi, where L2 norm is more capable of en-
hancing pixel value differences (approximating random noise is also an effective
method). And α and β are coefficients. The iteration process is shown in Eq. (3),
with max iteration number T and termination threshold ξ in Algorithm 1.

x̃i = x̃i − lr ∗ ▽x̃i
L(x̃i). (3)

Note that we have defined F (·) as the last layer of the local model. In fact,
different layers can be selected, resulting in distinct X̃. The last layer is an
optimal choice for F (·) indeed. The detailed comparison can be found in Sec. 5.4.

3.4 Visual Similarity Measurement

Structural Similarity Index Measure (SSIM) [42] is frequently applied to mea-
sure the similarity between any two images x1 and x2. SSIM performs better
than other metrics (e.g ., RMSE [6] and PSNR [1]) due to its alignment with
human visual standards, consisting of luminance similarity, contrast similarity
and structure similarity. SSIM yields values within range of 0 to 1, with higher
values indicating greater similarity between x1 and x2. The definition of SSIM
is shown in Eq. (4), where a, b and c represent the important degree, with mean
µ and variance σ. C1, C2 and C3 are tiny constants to prevent division by zero.

SSIM(x1, x2) = [L(x1, x2)]
a[C(x1, x2)]

b[S(x1, x2)]
c,

L(x1, x2) =
2µx1

µx2
+C1

µ2
x1

+µ2
x2

+C1
, C(x1, x2) =

2σx1
σx2

+C2

σ2
x1

+σ2
x2

+C2
, S(x1, x2) =

σx1x2
+C3

σx1σx2+C3
.

(4)

Generally, a=b=c=1 and C3=C2/2 are used to further simplify SSIM with Eq. (5).
In this way, we measure SSIM between different images of the same person. Ex-
perimentally, SSIM for various pictures of the same one remains around 0.3.

SSIM(x1, x2) =
(2µx1µx2 + C1)(2σx1x2 + C2)

(µ2
x1

+ µ2
x2

+ C1)(σ2
x1

+ σ2
x2

+ C2)
. (5)
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4 Security Analysis

4.1 Threat Model

Attack Scenario. The data owner u generates the veiled data X̃ = {x̃1, ..., x̃n}
from the original data X = {x1, ..., xn} with label Y = {y1, ..., yn}. This process
involves a flipping ratio p and the local model F (·). Then, (X̃, Y ) is shared with
the third party for training a classification model F̃ (·). We adopt the black-box
assumption on the access to F̃ (·), allowing anyone to obtain F̃ (x) for input x.
Additionally, there is also a risk of the leakage of X̃ and Y during data sharing.
Attacker Capability. Generally, the attacker is limited to acquiring F̃ (·) in a
black-box way. Meanwhile, when data sharing is not protected by u, attackers
can also steal X̃ and Y . Consequently, the attacker’s capabilities contain (X̃, Y )
and F̃ (·). The goal of attackers is to reconstruct the original data X.

4.2 Hardness of Attack

Naive Attack. Due to a lack of knowledge of RPF (·) and GIA(·), it is hard
for attackers to restore the original data X from the veiled data X̃.

For ORL, each image xi ∈ X has a size of 112 × 92, totaling 10,304 pixels.
Other datasets may have larger dimensions. When the flipping ratio p = 0.5,
the number of flipped pixels is 5,152. Potential variations in the flipping process
result in an extremely large number of possibilities, i.e., C5152

10304. Additionally,
distinct random flipping masks m̃ are constructed for each xi. What’s more,
the specific structure of F (·) is important to generate X̃, even subtle variations
in hyperparameters lead to distinct outputs. We have attempted some common
denoising methods (e.g ., filtering), which are ineffective in restoring X from X̃.
Consequently, achieving a successful naive attack is unattainable.
Adaptive Attack. Adaptive attack assumes attackers possess implementation
of RPF (·) and GIA(·), as well as the flipping ratio p and the structure F̃ (·).

Theoretically, xi ∈ X could be restored through reverse methods. However,
random flipping masks m̃ are inherently non-identical, even using the same ran-
dom pixel flipping RPF (·). Attempting to use m̃ corresponding to xj to restore
xi results in more chaos rather than restoration. Additionally, F̃ (·) may has a
different structure from F (·). The optimization standard X for the gradient it-
eration algorithm GIA(·) can’t be obtained and it typically finds local optimal
solutions. Therefore, X is hard to be restored from X̃. In summary, the adaptive
attack proves to be challenging in practice.

5 Experimental Evaluation

5.1 Setup

Datasets. For comprehensive experiments, we utilize many widely-used image
datasets, including BioID, ORL, LFW and CelebA for face recognition tasks
while MNIST, CIFAR10 and CIFAR100 for image classification tasks. Among
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Table 2: Datasets’ details and experimental results on their corresponding testing
data. For each dataset, the baseline model is trained with the original training data,
and the veiled model is trained with the generated veiled training data.

#Dimensionality #Class #Instance Backbone Baseline Model Veiled Model
Original Data Veiled Data Original Data

BioID 1*384*286 20 1,488 VGG16 99.34% 98.68% 98.01%
ORL 1*92*112 11 110 LeNet-5 96.97% 96.97% 96.97%
LFW 3*250*250 5,749 13,233 VGG16 88.89% 88.89% 85.19%

CelebA 3*178*218 10,177 202,599 VGG16 87.96% 87.09% 83.87%
MNIST 1*28*28 10 60,000 AlexNet 99.13% 98.58% 96.60%

CIFAR10 3*32*32 10 60,000 AlexNet 85.99% 84.09% 81.73%
CIFAR100 3*32*32 100 60,000 VIT 87.35% 83.22% 81.86%

RSS 3*512*512 45 197,121 ResNet18 88.50% 86.62% 85.36%

them, BioID comprises 20 identities, totaling 1,488 grayscale facial images, with
dimensions of 384 × 286. ORL contains 11 identities, each contributing 10
grayscale facial images, with dimensions of 92 × 112. LFW includes 5749 per-
sons with 13,233 RGB facial images of 250 × 250 size. CelebA comprises 10,177
identities, including 202,599 RGB images with 178 × 218 size. MNIST contains
10 categories, a total of 60,000 grayscale images, with 28 × 28 size. CIFAR10
involves 10 classes, a total of 60,000 RGB images, with 32 × 32 size, while
CIFAR100 involves 100 classes. RSS is considered for remote sensing scene clas-
sification, with 512 × 512 sizes, 45 classes, and a total of 197,121 RGB images.
Networks. Various commonly used DNN models are employed as the baseline
model for different datasets. We choose VGG16 [31], LeNet-5 [17], AlexNet [16],
VIT [9] and ResNet18 [11] for corresponding different datasets. In addition, we
have verified that other networks are also feasible.
Training Settings. CrossEntropy is chosen as the loss function and Stochastic
Gradient Descent (SGD) is applied as the optimizer. Flipping ratio p = 0.5.
Hyper-parameters α = 0.999 and β = 0.001. Max iteration number T = 300 and
termination threshold ξ = 0.3. Details of setup are available in Tab. 2.

5.2 Veiled Data Generation

Firstly, we train baseline models on the original data for different datasets.
In Tab. 2, the baseline models achieve 99.34%, 96.97%, 88.89%, 87.96%, 99.13%,
85.99%, 87.35% and 88.50% accuracy for BioID, ORL, LFW, CelebA, MNIST,
CIFAR10, CIFAR100 and RSS datasets respectively.

Afterwards, we generate the veiled data X̃ from the original data X via the
Veil Privacy framework. It results in a significant visual distinction between X̃
and X, while ensuring that X̃ and X remain similar latent features to F (·).
Examples of X and X̃ are shown in Fig. 2. For different datasets, X̃ has effec-
tively hidden the visual privacy of X. As shown in Tab. 3, we measure the SSIM
between X̃ and X. All SSIMs almost remain below 0.05, far below 0.3 which
indicates the SSIM between different images of the same class. As an efficient
framework, Veil Privacy has a low time complexity (See the supplement C).
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Fig. 2: Examples of the original data X and the veiled data X̃ for different datasets.

Table 3: SSIM between X and X̃. Examples 1, 2 and 3 are shown in Fig. 2 respectively.

BioID ORL LFW CelebA MNIST CIFAR10 CIFAR100
Example 1 0.02903 0.03130 0.06522 0.03024 0.02130 0.00331 0.08573
Example 2 0.05010 0.04346 0.05702 0.04417 0.02835 0.01100 0.02004
Example 3 0.05238 0.03576 0.05366 0.01773 0.04311 0.02144 0.02988

5.3 Main Experiments

Testing on Veiled Data and Original Data. We substitute X with X̃ to
train the veiled model and the results are presented in Tab. 2. The veiled model
for BioID achieves 98.68% accuracy on X̃ and 98.01% accuracy on X. The veiled
model for ORL achieves 96.97% accuracy on X̃ and 96.97% accuracy on X. The
veiled model for LFW achieves 88.89% accuracy on X̃ and 85.19% accuracy on
X. The veiled model for CelebA achieves 87.09% accuracy on X̃ and 83.87%
accuracy on X. The veiled model for MNIST achieves 98.58% accuracy on X̃
and 96.60% accuracy on X. The veiled model for CIFAR10 achieves 84.09%
accuracy on X̃ and 81.73% accuracy on X while the veiled model for CIFAR100
achieves 83.22% accuracy on X̃ and 81.86% accuracy on X. The veiled model for
RSS achieves 86.62% accuracy on X̃ and 85.36% accuracy on X. X̃ has almost
maintained the same utility for DNNs as X.

It validates the effectiveness of Veil Privacy in balancing the utility-privacy
trade-off. The veiled model not only predicts the veiled data but also efficiently
recognizes the original data. As a pioneering work for this practical problem, we
establish our own standard baselines for comparison (details seen in Supplemen-
tary Material D). Furthermore, we further investigate the utility of the veiled
data X̃ for combination and fine-tuning training on facial datasets.

Table 4: Results of combination&fine-tuning training, transferability and comparison.

Combination Training Fine-tuning Training Transferability
Total Original Data Veiled data Total Original Data Veiled data Veiled Data Original Data

BioID 99.34% 99.33% 100.00% 99.35% 99.34% 100.00% 98.01% 95.36%
ORL 96.97% 96.88% 100.00% 97.22% 96.97% 100.00% 96.97% 96.97%
LFW 88.89% 86.37% 100.00% 89.29% 88.89% 100.00% 85.19% 85.07%

CIFAR10 [3] [25] [26] [8] Veil Privacy
Accuracy on Original Data 64.3±0.7% 66.3±0.2% 64.7±0.2% 57.5±0.5% 81.73%
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Combination Training. We substitute one class of the original data X with its
the corresponding veiled data X̃. Consequently, the combination dataset com-
prises one class of X̃ and other classes of X. Subsequently, the combination
model is trained using the combination dataset.

The results are presented in Tab. 4. For BioID, the combination model
achieves 99.34% accuracy totally, while 99.33% accuracy on X and 100% accu-
racy on X̃. For ORL, the combination model achieves 96.97% accuracy totally,
while 96.88% accuracy on X and 100% accuracy on X̃. For LFW, the com-
bination model achieves 88.89% accuracy totally, while 86.37% accuracy on X
and 100% accuracy on X̃. More importantly, all the combination models achieve
100% accuracy on the one corresponding substituted class of the original data.
It indicates the effectiveness of the veiled data X̃ for combination Training.
Fine-tuning Training. We have reserved one class in advance for fine-tuning.
The veiled data X̃ of the new class is added to the original dataset to build the
fine-tuning dataset. Therefore, the fine-tuning dataset comprises one new class
of X̃ and other classes of X. We employ the baseline model as the pre-trained
model and fix all parameters while only retraining the last classification layer.

The results are shown in Tab. 4. For BioID, the fine-tuning model achieves
99.35% accuracy totally, while 99.34% accuracy on X and 100% accuracy on
the new X̃. For ORL, the fine-tuning model achieves 97.22% accuracy totally,
while 96.97% accuracy on X and 100% accuracy on the new X̃. For LFW, the
fine-tuning model achieves 89.29% accuracy totally, while 88.89% accuracy on X
and 100% accuracy on the new X̃. And all the fine-tuning models achieve 100%
accuracy on the one corresponding new class of the original data. It validates
the effectiveness of the veiled data X̃ for fine-tuning training.
Transferability of Veiled Data. Inspired by Demontis et al . [4] which demon-
strates the transferability of adversarial examples by the intrinsic adversarial
vulnerability of the transfer model and the surrogate model’s complexity, we
also explore the transferability of the veiled data X̃. Here, we consider the base-
line model as the surrogate model, with AlexNet serving as the transfer model.
For three facial datasets, we train the transfer model using veiled data X̃ that
is generated with the baseline model.

The results are shown in Tab. 4. For BioID, the transfer model achieves
98.01% accuracy on X̃ and 95.36% accuracy on X. For ORL, the transfer model
achieves 96.97% accuracy on X̃ and 96.97% accuracy on X. For LFW, the trans-
fer model achieves 85.19% accuracy on X̃ and 85.07% accuracy on X. It proves
a notable degree of transferability exhibited by the veiled data X̃.
Method Comparisons. As a pioneering work and the first complete solution,
it is difficult to compare Veil Privacy with existing works on the same task. As
stated in Section II, if dataset distillation is regarded as a privacy technique, our
framework preserves the utility of the original data more effectively. Advanced
dataset distillation techniques (e.g ., [3], [25], [26] and [8]) respectively achieved
only around 64.3%, 66.3%, 64.7% and 57.5% accuracy (See Tab. 4) on CIFAR10
with AlexNet, compared to our 81.73%. Furthermore, we also conduct more basic
explorations (See supplement A) for a more comprehensive comparison.
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Fig. 3: Ablation. Examples for X̃ that are generated with different p and F (·)

Table 5: Ablation Study. Images A, B and C are shown in Fig. 3.

Random Pixel Flipping Gradient Iteration Algorithm(p = 0.5)
Noise p = 0.3 p = 0.4 p = 0.5 Fc3 Fc2 Fc1 Conv

SSIM
Image A 0.01031 0.14702 0.08653 0.03478 0.03130 0.04429 0.05292 0.10403
Image B 0.00735 0.17094 0.09527 0.03607 0.04346 0.05021 0.06085 0.11821
Image C 0.00723 0.18134 0.09172 0.01760 0.03576 0.04818 0.05899 0.11647

ACC X̃ 93.94% 96.97% 96.97% 96.97% 96.97% 96.97% 96.97% 96.97%
X 55.76% 96.97% 96.97% 96.97% 96.97% 96.97% 96.97% 96.97%

5.4 Ablation Study

Random Pixel Flipping. Random pixel flipping RPF (·) is applied to create
the visual difference between the veiled data X̃ and the original data X. Here,
we explore the optimal setting of the flipping ratio p. For comparison, we replace
random flipping with generating random noise directly. With the same gradient
iteration algorithm, we generate different X̃. Fig. 3 shows some examples and
SSIM between X̃ and X are shown in Tab. 5. It’s observed that the visual
difference between X̃ and X scales up gradually with the increase of p.

We train the veiled model with different X̃. The results are shown in Tab. 5.
All the veiled models with different p achieve high accuracy both on X̃ and
X. Notably, the veiled model with noise achieves 96.94% accuracy on X̃ but
only 55.76% accuracy on X. We also find that if one initializes GIA(·) with X
(i.e. abandon RPF (·)), it will completely fail to result in a significant visual
distinction. It indicates the random pixel flipping RPF (·) not only hides visual
privacy information but also preserves latent features of the original data to a
certain extent. Overall, p = 0.5 has a suitable balance between concealing visual
privacy and retaining latent features.
Gradient Iteration Algorithm. Gradient iteration algorithm GIA(·) makes
the veiled data X̃ retain similar latent features to the original data X. Here, we
explore the best choice among different layers of the local model F (·). Specifically,
three fully connected layers Fc3(·), Fc2(·), Fc1(·) and the last convolutional
layer Conv(·) are assayed. With the same random pixel flipping RPF (·) (p =
0.5), we generate different X̃. Fig. 3 shows some examples and SSIM between X̃
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Fig. 4: Advanced MIAs (Ginver and Secret) on BioID, ORL and LFW

Table 6: SSIM compared to X. Images a, b and c are shown in Fig. 4.

BioID ORL LFW
Veiled Data Ginver Secret Veiled Data Ginver Secret Veiled Data Ginver Secret

Image a 0.02870 0.08195 0.02068 0.03130 0.09019 0.02905 0.06522 0.05163 0.07567
Image b 0.08073 0.09552 0.05144 0.04346 0.04801 0.01224 0.05702 0.05223 0.00331
Image c 0.05563 0.00128 0.06491 0.03576 0.07975 0.01070 0.05428 0.05996 0.00566

and X are reported in Tab. 5. As F (·) moves closer to the input layer, X̃ and
X exhibit greater visual similarity.

We train the veiled model with different X̃. The results are presented in Tab. 5.
Each veiled model achieves high accuracy on both X̃ and X. Notably, the veiled
model with Fc3(·) achieves 96.97% accuracy on X̃ and 96.97% accuracy on X,
offering the most effective concealment of visual privacy. And we also find that
keeping RPF (·) with p=0.5 while removing GIA(·) will destroy the utility of
data. Therefore, selecting the last layer of the local model as F (·) is a well-
considered design choice.

5.5 Security Evaluation

Model Inversion Attack (MIA). MIA aims to reconstruct training data
through the prediction vector of the attacked model. In our attack scenario, a
successful attack means the restoration of the veiled data X̃ through the veiled
F̃ (·). However, we explore the risk of whether the original data X are possible
to be restored through MIA on F̃ (·) due to similar latent features with X̃.

We conducted two advanced MIAs, i.e., Ginver [46] and Secret [48], with la-
bels to attack the classification model F̃ (·). As shown in Fig. 4, the reconstructed
images are visually completely different from the original ones. We measure SSIM
between original images and restored images. As shown in Tab. 6, SSIMs between
the original data and the restored samples are almost below 0.1. It indicates that
our framework has a defensive capability against MIAs.
Image Restoration Method. We further examine the robustness of the frame-
work against advanced image restoration methods. Specifically, we implement
GAN Prior Embedded Network [45] (GPEN) to restore the original data X
from the veiled data X̃. As a comparison, we add gaussian noise into the origi-
nal images and employ GPEN on the noised data.
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Fig. 5: Image Restoration Method (GPEN) on BioID, ORL and LFW

Table 7: SSIM compared to X. Images a, b and c are shown in Fig. 5.

BioID ORL LFW
Veiled Restored Noised Restored Veiled Restored Noised Restored Veiled Restored Noised Restored

Image a 0.02903 0.06315 0.09249 0.33262 0.03130 0.08289 0.10282 0.36875 0.06522 0.06357 0.11898 0.43874
Image b 0.05010 0.05621 0.08740 0.34118 0.04346 0.08676 0.11860 0.41322 0.05702 0.06323 0.12707 0.40150
Image c 0.05238 0.08083 0.09153 0.32008 0.03576 0.04736 0.09712 0.48241 0.03576 0.04393 0.11516 0.40930

The results are shown in Fig. 5. GPEN effectively restores the noised images
but fails to restore the original images from the veiled ones. We measure SSIM
between the original images and others, and the results are shown in Tab. 7.
SSIM between the original data and the restored data remains below 0.1, which
means reconstructed images are almost completely different from the original
ones. It further proves the security of the Veil Privacy framework. More classical
security experiments can be found in the supplement B.

6 Conclusion

Existing works on data privacy protection have encountered numerous dif-
ficulties in balancing the trade-off between utility and privacy. How can we
generate privacy-preserving surrogate data for utilization or sharing without a
significant performance degradation? In this paper, we introduce a remarkably
effective framework, Veil Privacy, for safeguarding the privacy of visual data.
This framework generates the veiled data by designing two key techniques: the
random pixel flipping and the gradient iteration algorithm. In contrast to the
original data, the veiled data retains latent features while expunging visual pri-
vacy information. Extensive evaluations conducted across various datasets and
models demonstrate the effectiveness and security of the framework. In future
research, we will further explore the balance between utility and privacy for ad-
justing hyper-parameters and different customized AI security services, e.g ., the
preservation of privacy attributes such as gender and age within the veiled data.
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