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1 Implementation Details

1.1 Irregular Noise Schedules

Sampling process for diffusion models can be accelerated via skipping some steps
in the diffusion process [6,7,11]. A straightforward approach is to use uniformly
spaced jumps across the noise schedule (see Fig. 1a) where the sampling path
is uniformly spaced out by the selected number of steps in a regular manner.
A schedule we commonly use in this study is a “15, 10, 5” schedule, which is
pictorially depicted in Fig. 1b. This amounts to partitioning the total number
of steps used in training into 3 parts and taking uniformly spaced 5, 10, and 15
samples from the respective segments, leading to increased sampling frequency
at the lower noise levels. Although the samples are taken uniformly inside a given
segment, each segment has different number of steps, making the whole schedule
irregular (see Fig. 1b). We note that this irregular noise schedule is based on the
ones proposed in [6], and the number of segments and the number of steps in each
segment are chosen for the inverse problem setup based on computation time
constraints while ensuring generalizability. We also note that a superior schedule
may exist for a specific inverse problem, and optimization of these irregular noise
schedules is an open problem to the best of our knowledge.

1.2 Model Details

Pre-trained models for FFHQ and ImageNet were taken from [1] and [6], respec-
tively. Both score models were used without any retraining. For our approxima-
tion for the Hessian of the log prior, we utilized Daubechies 4 (db4) wavelet as
the orthogonal wavelet transform. For our database evaluation, we employed 30
timesteps with “15, 10, 5” schedule for 10 epochs. Furthermore, for simplicity, we
opted to initialize the learnable {ζt} and {Dt} values uniformly across steps and
diagonals, respectively. For {ζt} initialization in Gaussian and motion blur, 0.2
was chosen. For random inpainting and super-resolution, 0.1 was used. For all
inverse problem tasks, diagonals of {Dt} were initialized to 0.2. Adam optimizer
with default settings was used.
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(a) Fast sampling scheme that uses uniform jumps across the noise schedule.

(b) Fast sampling scheme that uses irregular jumps across the noise schedule.

Fig. 1: Illustrative figure for uniform/irregular noise schedules.

1.3 Baseline Implementations

DDRM. We followed the original implementation code provided by [9], and
used the default values of η = 0.85 and ηB = 1.0 with 20 NFE DDIM.

Score-SDE, MCG, and DPS. For DPS implementation, we followed the orig-
inal code provided by [2], while for MCG, we additionally performed projections
onto the measurement set. For Score-SDE, we again employed projections onto
the measurement set, without any gradient term to guide the diffusion process.
We used 1000 NFE for each unless otherwise stated.

ΠGDM. We followed the original implementation detailed in [12] and used its
public repository for implementation. We used 100 NFE unless otherwise stated.

All algorithms (including ZAPS) were implemented using a single NVIDIA
A100 GPU. All algorithms used the same pre-trained unconditional diffusion
models for a fair comparison.

1.4 Different Sampling Strategies

It is possible to use deterministic sampling schemes, such as denoising diffu-
sion implicit models (DDIM) [11], to sample from a pre-trained DDPM model.
Forward process for DDIM can be expressed as

qσ(xt|xt−1,x0) =
qσ(xt−1|xt,x0) · qσ(xt|x0)

qσ(xt−1|x0)
. (1)

As evident from observation, each xt is not solely dependent on xt−1 but also
on x0, rendering the forward process non-Markovian. Given a noisy observation



Zero-Shot Approximate Posterior Sampling 3

Fig. 2: Representative image reconstructed with ZAPS, using DDIM and DDPM sam-
pling schemes. DDPM exhibits superior performance to DDIM in terms of both visual
quality and quantitative metrics.

xt, the reverse process involves initially predicting the corresponding denoised
x0 via Tweedie’s formula

x̂0 =
xt −

√
1− ᾱt · ϵθ(xt, t)√

ᾱt
. (2)

Using this estimate, one can generate a sample xt−1 from a sample xt via:

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1 − σ2

t · ϵθ(xt, t) + σtz, (3)

where σt = η ·
√

(1−ᾱt−1)
(1−ᾱt)

·
(
1− ᾱt

ᾱt−1

)
and z ∼ N (0, I). When σt = 0, sampling

process becomes deterministic. We utilized both DDPM and DDIM with the
same number of sampling steps within our ZAPS framework and as seen from
Fig. 2, DDPM outperforms DDIM sampling both visually and quantitatively.
Thus, we use DDPM in our work.

2 Additional Quantitative Results

2.1 ImageNet Results

Tab. 1 depicts quantitative evaluation of the state-of-the-art methods using
LPIPS, SSIM, and PSNR for noisy inverse problems (σ = 0.05) on the Ima-
geNet database. ZAPS shows competitive quantitative results either as the best
or the second best among all the state-of-the-art methods.

2.2 Comparisons with DDNM and DiffPIR

We further compared ZAPS with the recently proposed DDNM [14] and Diff-
PIR [15] for Gaussian deblurring and super-resolution (×4) tasks (see Tab. 2).
Each method is implemented using their respective public repository. ZAPS
achieves > 20% improvement in terms of LPIPS, which is a perception-oriented
metric.
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Table 1: Quantitative results for Gaussian deblurring and super-resolution (×4) on
ImageNet dataset. Best: bold, second-best: underlined. Comparison methods are omit-
ted if they could not be implemented reliably for the given inverse problem task.

Method Gaussian Deblurring Super-Resolution (×4)

LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

DPS [2] 0.230 0.668 22.16 0.275 0.673 21.77
MCG [3] 0.317 0.529 15.25 0.414 0.397 15.86
ΠGDM [12] - - - 0.192 0.707 22.94
DDRM [9] 0.233 0.680 23.34 0.212 0.725 24.33
Score-SDE [1,4, 13] 0.324 0.545 15.41 0.455 0.361 14.94

ZAPS (Ours) 0.225 0.682 22.45 0.186 0.718 23.82

2.3 Different Total Epochs - Timesteps Combinations with Fixed
Total NFEs

As explained in our first ablation study in the main text, we also assessed the
effectiveness of various combinations of total timesteps in the posterior sampling
and number of epochs for fine-tuning quantitatively (see Tab. 3) while keeping
the NFE constant. As anticipated, decreasing the number of epochs to 5 to
allocate more timesteps had an adverse impact, where for some measurements,
log-likelihood weights and approximated diagonals did not have the time to
stabilize during the fine-tuning. Also as expected, 15 epochs × 20 timesteps
combination and 10 epochs × 30 timesteps had similar outcomes, in which the
latter outperformed the former slightly, and was used in the study.

3 Additional Qualitative Results

3.1 Effect of Using Distinct Weights {ζt}

As part of our ablation studies, we examined the influence of selecting a shared
weight ζ for every step versus using distinct weights ζt for each timestep. Fig. 3a
shows that the shared ζ approach leads to artifacts that are highlighted in the

Table 2: Quantitative results for Gaussian deblurring and super-resolution (×4) on
FFHQ dataset using NFE=100 (σ = 0.05) for each method. Best: bold, second-best:
underlined.

Method NFE↓ WCT(s)↓
Gaussian Deblur SR (× 4)

LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

DiffPIR [15] 100 12.47 0.182 25.86 0.143 26.02
DDNM [14] 100 11.88 0.172 27.25 0.148 26.76

ZAPS 100 10.85 0.128 26.41 0.114 26.83
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Table 3: Quantitative results for different epochs-steps combination (fixed NFE= 300)
for the super-resolution (×4, σ = 0.05) inverse problem task on FFHQ dataset. Best:
bold, second-best: underlined.

Combination Schedule LPIPS↓ SSIM↑ PSNR↑

15 epochs × 20 timesteps “10, 7, 3” 0.096 0.763 26.48
10 epochs × 30 timesteps “15, 10, 5” 0.104 0.768 26.63
5 epochs × 60 timesteps “30, 20, 10” 0.109 0.741 26.39

zoomed-in insets. Furthermore, Fig. 3b shows that the shared approach is suscep-
tible to the goodness of the initialization, while the adaptive ζt weights are able
to recover from arbitrary initializations. Fig. 3c further shows that the shared
approach is prone to overfitting. Thus, the proposed approach with adaptive ζt
log-likelihood weights is preferred.

3.2 Effect of Higher Number of Epochs for Fine-Tuning in ZAPS

We evaluated our method on a representative ImageNet sample over 30 epochs
for motion deblurring inverse problem task using 30 steps. As seen from Fig. 4,
both the reconstruction faithfulness, and the visual quality, measured by PSNR

(a) Results for shared and distinct log-likelihood weights for irregular timesteps.
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Fig. 3: Study on different ζ choice strategies.
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Fig. 4: Different epochs ZAPS reconstruction for motion deblurring task (σ = 0.05).
Fine-tuning becomes redundant after the 10th epoch when 30 sampling steps is being
used.

and LPIPS respectively, demonstrate an increase via fine-tuning. However, after
the 10th epoch, the performance saturates and the gain through the log-likelihood
weight update is diminished. Furthermore, no DIP-like overfitting was observed
owing to the differences between the training loss function and the log-likelihood
update term, as discussed in the main text. Thus, 10 epochs were used as the
maximum number of epochs for the 30 step ZAPS setting to minimize total
NFEs.

3.3 Effect of Wavelet Transform Choice

We further investigated using different types of orthogonal wavelets from the
Daubechies wavelet family in Fig. 5. As seen from the results, the effect of the
wavelet selection is negligible. Therefore, we opted to use Daubechies 4 wavelet
as it is commonly used in sparse signal processing literature [10].

3.4 Additional Experimental Results

Further qualitative experimental results, comparing ZAPS with our state-of-
the-art baseline, DPS, for various noisy inverse problem tasks (σ = 0.05) are

Fig. 5: Illustrative ZAPS results when different orthogonal wavelets are considered.
The effect of the wavelet choice is trivial as each of them can converge to a good
reconstruction. As it is commonly used in practice, we decide on using Daubechies 4
wavelet.
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given in Figs. 6 to 11. We also provide inpainting task outcomes in Fig. 12 for
various types of masks in addition to random and rectangular box inpainting.
Our approach, involving the adjustment of the log-likelihood weights during fine-
tuning and integration of irregular noise schedules with fewer sampling steps,
results in a notable acceleration of approximately ×3 on the FFHQ dataset and
around ×4 on ImageNet dataset, while also delivering superior performance.

4 Derivation of ΠGDM Update Using Woodbury Matrix
Identity

For the log-likelihood estimation, ΠGDM [12] uses a Gaussian centered around
Ax̂0 to obtain the following score approximation:

∇xt log pt(y|xt) ≃
∂x̂0

∂xt
A⊤(r2tAA⊤ + σ2

yI)
−1(y −Ax̂0). (4)

In the text, we state that using Woodbury matrix identity, this can be rewritten
as

∇xt
log pt(y|xt) ≃

∂x̂0

∂xt
(A⊤A+ ηI)−1A⊤(y −Ax̂0), where η =

σ2
y

r2t
, (5)

which is more similar in form to DPS.

Proof. One can write Eq. (4) as

∂x̂0

∂xt
A⊤(r2tAA⊤+σ2

yI)
−1(y−Ax̂0) =

∂x̂0

∂xt
A⊤ 1

r2t
(AA⊤+ηI)−1(y−Ax̂0), (6)

where η =
σ2
y

r2t
. Applying Woodbury matrix identity, (AA⊤+ηI)−1 can be rewrit-

ten as

(AA⊤ + ηI)−1 =
I

η
− A

η

(
I+

1

η
A⊤A

)−1
A⊤

η
(7)

=
1

η

(
I−A

(
ηI+A⊤A

)−1
A⊤

)
. (8)

Thus, Eq. (6) becomes

∇xt log pt(y|xt) ∝
∂x̂0

∂xt

A⊤

η

(
I−A

(
ηI+A⊤A

)−1
A⊤

)
(y −Ax̂0). (9)

Noting I = (A⊤A+ ηI)(A⊤A+ ηI)−1 yields

∇xt
log pt(y|xt) ∝

∂x̂0

∂xt
I(A⊤A+ ηI)−1A⊤(y −Ax̂0), (10)

which is similar to the DPS update, where (A⊤A+ ηI)−1 is the difference.
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Fig. 6: Gaussian deblurring results for ZAPS and DPS on FFHQ [8] 256×256 dataset.
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Fig. 7: Gaussian deblurring results for ZAPS and DPS on ImageNet [5] 256×256
dataset.
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Fig. 8: Super-resolution (×4) results for ZAPS and DPS on FFHQ [8] 256×256 dataset.
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Fig. 9: Super-resolution (×4) results for ZAPS and DPS on ImageNet [5] 256×256
dataset.
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Fig. 10: Random inpainting (70%) results for ZAPS and DPS on FFHQ [8] 256×256
and ImageNet [5] 256×256 dataset.
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Fig. 11: Motion deblurring results for ZAPS and DPS on FFHQ [8] 256×256 and
ImageNet [5] 256×256 dataset.
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Fig. 12: Representative ZAPS reconstructions for image inpainting task using different
masks (box size is 128× 128) with σ = 0.05.
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