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Abstract. In the field of Few-Shot Image Generation (FSIG) using
Deep Generative Models (DGMs), accurately estimating the distribution
of target domain with minimal samples poses a significant challenge. This
requires a method that can both capture the broad diversity and the true
characteristics of the target domain distribution. We present Conditional
Relaxing Diffusion Inversion (CRDI), an innovative ‘training-free’ ap-
proach designed to enhance distribution diversity in synthetic image gen-
eration. Distinct from conventional methods, CRDI does not rely on fine-
tuning based on only a few samples. Instead, it focuses on reconstructing
each target image instance and expanding diversity through a few-shot
learning. The approach initiates by identifying a Sample-wise Guidance
Embedding (SGE) for the diffusion model, which serves a purpose anal-
ogous to the explicit latent codes in certain Generative Adversarial Net-
work (GAN) models. Subsequently, the method involves a scheduler that
progressively introduces perturbations to the SGE, thereby augmenting
diversity. Comprehensive experiments demonstrate that our method out-
performs GAN-based reconstruction techniques and achieves compara-
ble performance to state-of-the-art (SOTA) FSIG methods. Additionally,
it effectively mitigates overfitting and catastrophic forgetting, common
drawbacks of fine-tuning approaches. Code is available at GitHub.
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1 Introduction

Deep Generative Model (DGM) has been developed for generating images [13,
18,42], audio [22,33] and point clouds [24,56]. A notable limitation, however, is
their dependency on large-scale datasets and substantial computational resources
for optimal performance. In many practical applications, only a few samples,
sometimes a single sample, are available, e.g . photos of rare animal species and
some medical images, in which case conventional DGM models are significantly
limited [2, 32]. To overcome this problem, Few-Shot Image Generation (FSIG)
methods have been proposed [30,52,61] to generate sufficiently high-quality and
diverse images with only a few samples as training data, e.g . 10 samples. A
natural way to achieve this goal is to transform the problem into a few-shot ‘style’
transformation, adapt prior knowledge from generative models built on larger

https://orcid.org/0009-0003-9128-1775
https://orcid.org/0000-0001-8156-2299
https://YuCao16.github.io/CRDI/


2 Cao et al.

CRDI 𝜂 = 1

CRDI 𝜂 = 8

CRDI 𝜂 = 15

Ground Truth

GAN Method

Fig. 1: Comparison of reconstruction results using Image2StyleGAN (GAN Based) [1]
and our proposed method CRDI (Diffusion Based) with varying η values. Both source
models are pre-trained on FFHQ [18]. We used the fast sampling method DDIM [44]
with total 25 inference steps. We further set η = 1, 8, 15, whilst larger value means a
stricter diffusion time-dependent SGE.

but ‘similar’ source datasets [30]. Generative Adversarial Network (GAN) [10] is
the most widely used method due to its high quality generation. However, if only
a few samples are available for learning the underlying distribution of a target
domain, standard knowledge transfer approach used in GANs such as fine-tuning
suffers from overfitting, mode collapse and catastrophic forgetting [21,37,43].

More recently, diffusion models (DMs) [14,45] have demonstrated remarkable
success, surpassing GANs in image generation [7]. In particular, their stochastic
processes and probabilistic nature make diffusion models inherently well-suited
for tasks such as image generation, text-to-image translation [38, 39, 42], and
image editing [28]. It is attractive to consider if DMs can also be developed
for FSIG to provide a better solution than the existing methods dominated by
GANs. However, directly applying existing adaptation techniques used in GANs,
including regularization [25,32] and modulation [61] to the DMs not only fails to
solve the problems faced by GANs, but also makes overfitting and catastrophic
forgetting problems even worse due to the significantly larger number of pa-
rameters of DMs [2]. In parallel, it has been shown recently that high-fidelity
StyleGAN2 [19] can represent a latent space for ‘accommodating’ a vast array
of out-of-distribution data, as shown in Fig. 1 [1,30]. This has triggered a desire
to discover and learn a GAN latent space for the target domain, therefore en-
abling image generation by sampling latent codes from the latent space [1, 30],
effectively mitigating the pitfalls of overfitting and catastrophic forgetting asso-
ciated with fine-tuning pre-trained models. However, this approach introduces
challenges, such as data leakage, and fails to apply directly to DMs, which lack
a deterministic explicit latent code. Current latent space analysis of DMs fo-
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cus primarily on semantic understanding, relying heavily on extensive data to
identify a latent space for controlling the output, through whether learning an
embedding space via VAEs [20] or geometric methods, hence incompatible with
few-shot settings [23,34,46,64].

To address this problem, we introduce a novel ‘training-free’ approach, Con-
ditional Relaxing Diffusion Inversion (CRDI), to maximize distribution diversity
in a diffusion generative process, leveraging a Sample-wise Guidance Embedding
(SGE) to enhance diversity for a target domain. In particular, we discard the
traditional concept of style transformation and solve the FSIG problem from
the perspective of improving diversity. This can be further decomposed into two
steps, Reconstruction and Diversity Enhancement. Specifically, first, we dis-
cover and estimate an SGE for the diffusion model, which serves as a guide for
inference process, enabling reconstruction of a given target sample. Crucially,
we allow flexibility in the intermediate noisy states, introducing a conditional
relaxing process that enables a more robust reconstruction with initial variabil-
ity. However, we find that the diversity enhancement from this step alone is
limited. Inspired by Sadat et al. [41], we identify that the core diversity issue
in diffusion models stems from their tendency to consistently associate identical
labels with specific regions in the distribution space through label embeddings.
Consequently, what should be stochastic variability is reduced to mere slight per-
turbations, rendering desirable randomness in diversity to an almost negligible
factor. To address this limitation and further boost diversity, we introduce a cru-
cial second step in our approach. Second, by manipulating the SGE through an
annealing noise perturbation scheduler, we enhance the diversity of these recon-
structions, fulfilling the FSIG objectives without the need for additional training
or fine-tuning within the target domain. This dual-step approach ensures sta-
ble estimation of the target domain distribution while enhancing diversity for
FSIG tasks. To the best of our knowledge, this work is the first to successfully
adapt DMs for few-shot domains, bypassing the traditional model fine-tuning
and mitigating the associated risk of overfitting to limited samples.

Our contributions are as follows: (1) Introduce and formulate a novel Sample-
wise Guidance Embedding (SGE) as a dynamic guidance mechanism for diffusion
models, enabling reconstruction within specific domains. We further show both
theoretically and experimentally that this SGE possesses comparable functional-
ities to the explicit latent codes of GANs. (2) Propose a novel approach to FSIG
by replacing the conventional style transformation with two separate processes
utilizing SGE, consisting of a per target instance reconstruction and a few-shot
target domain diversity expansion, without any additional training. (3) Explore
the correlation between the rigidity and diversity of SGE to quantitatively con-
trol and provide insight into its effectiveness across different target domains.

2 Related Works

Few Shot Image Generation (FSIG) The objective of FSIG is to gener-
ate samples that are both high-quality and varied within a novel domain [52].
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Conventional approaches typically apply fine-tuning a Generative Model pre-
trained on a large dataset of a similar domain [5, 6, 52]. However, fine-tuning a
full generative network mostly results in overfitting [16]. In practice, fine-tuning
only updates a part of a model, e.g . BSA [31] and FreezeD [29]. To further im-
prove the effectiveness of fine-tuning given a few shots, EWC [25], AdAM [61]
and RICK [62] exploited some kernel methods by identifying important weights
from the source model using Fisher Information [26] and preserve those knowl-
edge while fine-tuning. In addition, [32] and RSSA [55] introduce additional loss
functions to keep the structure of the generated target domain distribution close
to that of the source domain. Hu et al . [16] modified these loss functions in order
for a Large Multimodal Model (LMM) such as CLIP [36] to be able to apply
to a Diffusion Model. In parallel, a representation learning method GenDA [30]
was introduced for FSIG by constructing a manifold in a latent space.

Foundation Models Because of the high scalability of a diffusion model, many
Large Multimodal Models (LMMs) such as DALL-E [38] and Stable Diffusion [39]
have gained significant attention for zero-shot (prompt) generalization. Several
few-shot adaptation methods based on these foundation models have emerged
as a potential new solution for FSIG, such as DreamBooth [40], LoRA [15], and
Textual-Inversion [9]. Although these methods can generate samples from a few
shots, they are limited to adapting at the subject level. For optimal performance,
the categories of the provided samples must be familiar to the model. Due to
computational resource constraints, it is impractical to endlessly expand datasets
to cover all target domain categories. Moreover, a fundamental premise of FSIG is
that the target and source domains must not overlap [2,25,51,61], however, using
foundation models may have exposed target domain in training, voiding FSIG
assumptions. Therefore, the research on FSIG remains uniquely challenging.

Generative Model Latent Space It has been shown that high-fidelity model
such as StyleGAN2 [19] can capture a latent space for accommodating out-of-
distribution image generations [1], see examples in the first row of Fig. 1. To
explore this idea, GenDA [30] was proposed to explicitly construct a target data
manifold in a GAN latent space in order to generate images by sampling latent
codes from this discovered manifold. However, extending this concept to the
diffusion model presents greater challenges due to its iterative nature and the
absence of a deterministic explicit latent space [14, 35, 54]. The current latent
space analysis of diffusion methods is all semantically manipulable using inver-
sion techniques [44, 49]. These techniques can be summarized in two directions:
Some methods [34,46,57] use a variational autoencoder (VAE) [20] to construct
implicit latent code and disentangle the desired feature for downstream tasks.
Other methods [23, 64] use geometric analysis or a pre-trained LMM such as
CLIP to influence the original source domain latent space. These approaches
seek to establish an extensive semantic embedding space, necessitating large
datasets. Our approach is designed to overcome the inherent limitations of con-
structing a diffusion FSIG model from a small sample size target domain, capable
of simultaneously achieving diverse image generations beyond categories closely
similar to the source domain, and sufficiently robust tractable model behavior.
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3 Methodology

3.1 Preliminaries

Overview Our concept of decomposing FSIG into discrete steps is inspired by
the Latent Diffusion Model [39], showing the advantage of training a separate
compression network and a latent code sampler in isolation. This divide-and-
conquer principle not only provides a clearer understanding on which compo-
nents are limiting generation quality and diversity but also simplifies the overall
diversification discovery with only a few-shot from the target domain.
Diffusion Model Background Generating noise from data is a ‘simple’ pro-
cess, which can be described by the Stochastic Differential Equation (SDE):

dxt = f (xt, t) dt+ g (xt, t) dwt, t ∈ [0, T ] (1)

where w is the standard Wiener process, f : R → R and g : R → R are
scalar drift and diffusion coefficients, respectively, with continuous time variable
t ∈ [0, T ]. Song et al . [45] shows that the SDE in Eq.(1) can be converted to a
generative model by first sampling xT ∼ N (0, I) and then reversing the process
through a given SDE:

dxs =
[
−f (xs, s) + g (xs, s) g (xs, s)

⊤ ∇xs
log ps (xs)

]
dt+ g (xs, s) dws (2)

which is the reverse-time Eq.(1) [3,11,45], where xs := xT−t and ∇xs log ps (xs)
is the score function of the marginal distribution over xs. Correspondingly, f
and g are chosen to satisfy xT ∼ N (0, I). Further more, thanks to Tweedie’s
formula [8,47], score network sθ (xt, t) can be proven to be equivalent to a noise
network ϵθ(xt, t) introduced in Denoising Diffusion Probabilistic Model (DDPM)
[14], which describes diffusion process from probability viewpoint. The reverse
process equation using the noise prediction network is given by:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+

√
1− ᾱt−1ϵθ(xt, t). (3)

Problem Definitions To ensure notation consistency and enhance clarity, we
formulate the FSIG task as follows: Consider a pre-trained generative model,
the underlying distribution of the source data on which the model was trained is
represented as PS . Given a few samples from a target domain T with underlying
distribution PT , the goal is to adapt the pre-trained generative model to syn-
thesize samples that follow a distribution approximating the target distribution
PT . Here, S and T represent the source domain and target domain respectively.
Unless specified otherwise, the number of given samples of T is set to 10.

3.2 Unseen Target Domain Reconstruction

Unseen target domain reconstruction can be regarded as fine-grained conditional
generating. A conditional generative model can be derived as pt(x(t) | y) where
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Fig. 2: A visualization (left) of three randomly sampled trajectories (blue, orange and
green), all originating from the same initial point (red) and generated with Langevin dy-
namics. The green dots (right) represent the intermediate state xt. A time-independent
SGE is learned from one direct trajectory (yellow), which can be regarded as a direc-
tional path from xα to xβ . The SGEs used to guide generation are perturbed by noise
(gray) as defined in Sec. 3.3. Note that the right corner does not represent x0.

y is the condition. Per Bayes’ theorem, pt(x(t) | y) ∝ pt(x(t))p(y | x(t)), express
this relationship to a score equation, a conditional DM is described as:

∇x log pt(x(t) | y) = ∇x log pt(x(t)) +∇x log p(y | x(t)) (4)

where ∇x log pt(x(t)) and ∇x log p(y | x(t)) are respectively the scores of a
unconditional diffusion model and a time-dependent classifier [45]. Eq.(4) offers
a transformation from unconditional to conditional sampling. Rather than using
a module with simpler structures trained by few target domain samples to act
as a ‘classifier’, we consider that the latter form does not necessarily need to be
a trainable module, instead, it can be a fixed sample-wise tensor, which guides
the generating process, we call it a Sample-wise Guidance Embedding (SGE).
Fig. 2 shows a diagram of the proposed SGE. Since the classifier (Eq.(4)) is time-
dependent, we further classify the SGE tensor into two forms: time-dependent
Gθ(t) and, time-independent Gθ which is a special case of Gθ(t).
Degree of Rigidity For a diffusion model with T inference steps, we introduce
a parameter η, which can take any integer value from 1 to T . We define η = T
as a strict time-dependent SGE and, similarly, η = 1 as a time-independent
SGE. We call η as a degree of rigidity. In experiments, we observed that the
minimum value of η varies across different target domains during reconstruction
(Fig. 1). For those images similar to the source domain requires only a small η
for successful reconstruction. Conversely, for images completely distinct from the
source domain, e.g., reconstructing bedrooms with a model trained on a human
face dataset such as FFHQ, even with η = T is insufficient for reconstruction.
This observation inspired us to consider η as a crucial metric for assessing the
applicability of the knowledge learned on the source domain to a given target
domain. Moreover, from a gradient perspective, as the value of η decreases from
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Algorithm 1 Proposed Method Pseudo Code (η = 1)
1: Input: Target Domain T (given samples), Time Parameter α and β, Randomly

Initialized SGE Gi
θ for i ∈ [1, N ], a Frozen Noise Network ϵθ and Learning Rate ν.

2: while not converge do
3: for i, x0 in enumerate(T ) do
4: Sample t uniformly from [β, α]
5: Given xt−1 ← sample from

√
ᾱt−1x0 +

√
1− ᾱt−1ϵ, ϵ ∼ N (0, I)

6: ϵ̂← ϵθ (xt)−
√
1− ᾱtG

i
θ

7: x′
0 ← xt−

√
1−ᾱt ϵ̂√
ᾱt

8: x′
t−1 ←

√
ᾱt−1

(
xt−

√
1−ᾱt ϵ̂√
ᾱt

)
+
√
1− ᾱt−1ϵ̂

9: Gi
θ ← Gi

θ − ν∇Gi
θ
L

10: where L = ∥x0 − x′
0∥2 + ∥xt−1 − x′

t−1∥2 + ||Gi
θ − 1

N

∑N
j=1 G

j
θ||

2

11: return Gθ

T to 1, the role of our SDE shifts from dictating the pixel values to influencing
the pixel evolution process. More analysis is given in Sec. 4.2.
Per Instance Conditional Relaxing Reconstruction Pixel-level reconstruc-
tion using SGE involves a fixed noisy state xt obtained by adding noise to x0

according to Eq.(1). However, this condition can be relaxed by allowing the
inherent randomness in Eq.(1) to generate different xt while finding the SGE,
thereby enhancing reconstruction diversity. During the generation process, DMs
predict the previous state xt−1 from the current state xt using Eq.(3) with a noise
prediction network [14,45]. Additionally, Ho et al . [14] provide a direct estimate
of x0 from xt as shown in Eq.(6). In line with our SGE principle, the sample-wise
model adaptation can be effectively performed using Eq.(6). Nonetheless, during
the generation phase, the SGE with η > 1 not only aids in estimating the initial
state x0 (Fig. 2) but also facilitates the generation of the preceding state xt−1.
Therefore, our loss function is formulated as Eq.(5):

L = ∥x0 − x′
0∥2 + ∥xt−1 − x′

t−1∥2 (5) x0 =
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt
(6)

where x′
0 and x′

t−1 are derived using Eq.(6) and Eq.(3), respectively.

3.3 One-Shot Diversity Enhancement

Diversity is defined as the capacity of a model to generate a variety of outputs
for a given condition [41]. As demonstrated by Song et al . [44], abandoning the
constraint of a strict Markovian process enables the diffusion process to employ
fast sampling by skipping certain steps. This is achieved through a sub-sequence
τ drawn from the sequence [0, ..., T ]. However, a shorter τ corresponds to fewer
steps in the diffusion process, resulting in a reduced diversity of the stochas-
tic processes. Similarly, in our method, varying η leads to an equal division of
[0, ..., T ] into intervals, and for those diffusion processes that need greater η to
reconstruct a target sample, their diversity in the target domain would be neg-
atively affected. To reduce the negative impact of the high degree of rigidity
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on diversity, we utilize a annealing schedule function λ(t) designed by Sadat et
al . [41] which corrupts a given condition y based on:

ŷ =
√
γ(t)y + s

√
1− γ(t)ϵ (7) γ(t) =


1 t ≤ β
β−t
β−α β < t < α

0 t ≥ α

(8)

where ϵ ∼ N (0, 1), s is initial noise scale and α and β are the time parameters
defining respectively the beginning and the end of the noise scaling interval. In
our case, the SGE is the condition y in Eq.(7).

𝜂= 1

𝜂=15

Fig. 3: Generated Babies facial images with different η, slightly source domain leakage
problem (orange box) when η = 1.

However, the SGE in our method is not adaptable based on the current
state xt, making the condition scale inapplicable in our case. Taking this into
account, we can rewrite Eq.(7) as: ŷ = ⌈

√
γ(t)⌉y + s

√
1− γ(t)ϵ. Moreover,

λ(t) → 0 as t → T , then ŷ = s · ϵ is a scaled normal distribution independent of
y. This allows us to streamline the discovery of the SGE from encompassing all
timesteps to focusing on a specific sub-process. Specifically, the training scheme
can be described as: choosing a starting point α and an ending point β ∈ [0, T ],
for any given sample x ∼ T , we first calculate xα by Eq.(1), then we learn
an SGE using pre-trained diffusion model for every t ∈ [β, ..., α]. Finally, we
add noise perturbation s

√
1− γ(t)ϵ based on Eq.(8) to our SGE, as shown by

the gray line in Fig. 2. However, employing this method on SGE with a low η
could potentially lead to data leakage problem (Fig. 3) due to the indiscriminate
application of noise perturbation. We further discuss this phenomenon in Sec. 4.2

3.4 Synergy Effect with a Theoretical Analysis

In Sec. 3.2 and 3.3, we have described how to construct Sample-wise Guidance
Embedding (SGE) and to increase diversity by Noise Perturbation. Here we ex-
plain how we extend this method to the few-shot setting and give a theoretical
analysis. From a Score-based Diffusion viewpoint, the goal is to find an explicit
solution to solve the reverse-time SDE given by Eq.(2). Specifically, in the prob-
ability distribution space P, consider three distributions: the initial distribution
PI ∼ N (0, I); and two distinct final distributions – a source distribution PS and
a target distribution PT . The transformation from PI to PS within the space P
is characterized by Eq.(2) with a pre-trained score network sθ (xt, t).

In FSIG task, we want a score network s′θ (xt, t) which ‘transforms’ PI to the
target distribution PT . Let Xt represents the state of such a stochastic variable
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Fig. 4: Left: t-SNE results of given samples from Target Domain (Babies) (red), Source
Domain (FFHQ) (blue), our generated samples (green), RICK [30] generated samples
(purple). We show that our generated samples are more align with given target domain
samples over RICK. Right: A simulation depicting two SDE transitions from PI to the
PS and PT . The two solid red lines illustrate the mean trajectories towards the Source
and Target Domains, while the red dashed line indicates their extension.

at time t. Accordingly, for α and β ∈ [0, T ] and β < α, Eq.(2) forges a dynamic
bridge from Xα to Xβ . Despite the absence of s′θ (xt, t), we can utilize Eq.(1) to
sample infinite intermediate state Xt for any given sample and hence optimize an
SGE as described in Sec. 3.2. In essence, our SGE can be viewed as an individual
trajectory guidance from PI to PT . However, it is critical to recognize that
learning with a single sample may lead to substantial bias, potentially leading to
generated samples falling outside the target domain (implausible diversion). To
address this, we employ a mean across all the sample-wise guidance embeddings
to serve as a penalty loss. The aggregate mean of the SGE across all given samples
serves as an approximation of s′θ (xt, t), providing a general guidance for the
transition process. This strategy offers a practical solution by transitioning from
a sample-wise perspective to a set-wise perspective. Consequently, this ‘set-wise’
guidance embedding ensures a more stable learning process by providing a robust
and generalized direction for the transformation. Fig. 4 illustrates an overview
of this concept and Algo. 1 summarizes the overall model learning process.

4 Experiments

Datasets Following previous work [25,30,32], we used Flickr Faces HQ (FFHQ)
[18] as source domain datasets. We constructed a FSIG diffusion model to adapt
to the following common target domains for comparisons with existing FSIG
methods: (1) FFHQ-Babies [32], (2) FFHQ-Sunglasses [32], (3) Face Sketches
[50], (4) Emoji Faces from bitmoji.com API [48], (5) MetFaces [17], (6) portrait
paintings from the artistic faces dataset [58].
Metrics and Baseline For the reconstruction task, we calculate the SSIM
(Structural similarity index measure) as quantitative metrics. FID (Fréchet in-
ception distance) [12] and Intra-LPIPS (Intra-cluster pairwise Learned Percep-
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Table 1: SSIM [53] Score (↑) of Image2StyleGAN [1] and CRDI (ours) with vary η,
quantifying the reconstruction effectiveness.

Method Backbone Babies Amedeo Bitmoji Cat Bedroom Sketches

Image2Style StyleGAN2 0.57 0.76 0.68 0.73 0.52 0.43
CRDI η = 1 DDPM 0.55 0.66 0.67 0.65 0.58 0.48
CRDI η = 8 DDPM 0.68 0.75 0.81 0.77 0.67 0.63
CRDI η = 15 DDPM 0.74 0.84 0.84 0.83 0.84 0.71

tual Image Patch Similarity) [32, 60] are the most commonly used metrics in
FSIG tasks, quantitatively measuring how closely the generated samples match
the target domain in terms of quality and diversity, respectively. We further
propose a new metric, MC-SSIM (Mode Coverage Structural Similarity Index
Measure), which calculates the average of the top n SSIM scores for each gen-
erated image against the given set of target samples, a higher MC-SSIM score
indicates superior mode coverage. We compared our proposed method against 11
FSIG models including TGAN [52], TGAN+ADA [17], BSA [31], FreezeD [29],
EWC [25], CDC [32], RSSA [55], DDPM-PA [63] AdAM [61], RICK [62] and
GenDA [30]. RICK and GenDA are considered the SOTA methods for fine-
tuning and representation learning, respectively.
Implementation Details For the source model, we used Guided Diffusion [7]
and checkpoint from Baranchuk et al . [4] for FFHQ at 256×256. We further uti-
lized DDIM [44] and set the inference step at 25. Model learning was performed
on A100 & H100 GPU with batch size 10. We considered 10 randomly sampled
target samples, same as in existing methods for fair comparison, unless otherwise
specified. For more details refer to the supplementary material.

4.1 Results

Per Target Instance Reconstruction We performed a comparative analysis,
both qualitatively and quantitatively, of our reconstruction results against Im-
age2StyleGAN [1] (widely used by other FSIG methods), as shown in Fig. 1 and
Tab. 1. The comparison was carried out on distinct images from six domains
with different similarity to the source domain FFHQ (examples can be found
in Fig. 5). Additionally, in line with the methodology described in Sec. 3.2, we
also compared the outcomes with different values of η. It is evident that our
method consistently outperformed Image2StyleGAN in all six domains. Quali-
tatively, our technique excelled, especially in the Babies and Bitmoji categories,
reconstruction can be achieved even when η = 1 without introducing artifacts.
For domains that differ significantly from source domain, such as Bedrooms [59]
and Amedeo paintings [58], a larger η is required for reconstruction. Surprisingly,
although the Sketches [50] appear to be similar to source domain, they cannot
be fully reconstructed, even with strict time-dependent SGE.
FSIG Qualitative Evaluation We show examples of the generated images
of our method across two target domains (Babies and MetFaces), which vary
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Fig. 5: We present the generated samples and Intra-LPIPS (↑) for our method along-
side four other high performance methods across Babies (T1) and MetFaces (T2) with
different degrees of similarity to the source domain (S). While not consistently the best
in Intra-LPIPS (↑), the quality and mode coverage (red box) of our samples is superior,
characterized by fewer artifacts and an absence of noticeable overfitting phenomena.
Best in bold and the second best in underline with bold. For more visual examples,
please refer to supplementary material.

in their degree of similarity to the source domain, as in the top and bottom of
Fig. 5, respectively. It can be observed that the fine-tuning approaches (FreezeD,
RSSA, RICK) exhibit artifacts and overfitting in the generation within both
target domains, while the representation learning approach (GenDA) results in
images with limited diversity (low Intra-LPIPS). Our approach surpasses these
methods by minimizing visual artifacts through reconstruction and substantially
enhancing image diversity with progressively noise perturbation. However, in the
Babies category, there remains a diversity gap between our method and RICK.
We would like to emphasize that in many cases, guaranteeing the generation
quality of the resulting image and aligning it with the target domain is more
important than diversity, while over-increasing diversity can be dangerous. To
verify that our method outperforms existing methods on this point, we employ
a t-SNE [27] analysis against RICK on Babies in Fig. 4, it can be seen that
our generated distribution shows a higher level of alignment with the samples
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Table 2: Comparing FID (↓) Scores and MC-SSIM (↑) (for MetFaces only introduced
in Sec. 4) between 11 different methods and our proposed method (CRDI). Best in
bold and the second best in underline with bold.

Babies Sunglasses MetFaces

Methods Backbone FID ↓ FID↓ FID↓ MC-SSIM↑

TGAN [52] StyleGAN 104.79 55.61 76.81 0.61
TGAN+ADA [17] StyleGAN 101.58 53.64 75.82 0.61
BSA [31] StyleGAN 140.34 76.12 − 0.69
FreezeD [29] StyleGAN 110.92 51.29 73.33 0.64
EWC [25] StyleGAN 87.41 59.73 62.67 0.64
CDC [32] StyleGAN2 74.39 42.13 65.45 0.70
RSSA [55] StyleGAN2 75.67 44.35 72.63 0.68
DDPM-PA [63] DDPM 48.92 34.75 − −
AdAM [61] StyleGAN2 48.83 28.03 51.34 0.65
RICK [62] StyleGAN2 39.39 25.22 48.53 0.69
GenDA [30] StyleGAN2 63.31 35.64 104.48 0.35

CRDI (Ours) DDPM 48.52 24.62 94.86 0.78

from the target domain and a reduced alignment with the source domain. This
underscores the superior controllability of our method in the generation process.
FSIG Quantitative Evaluation In Tab. 2, we present complete FID scores,
highlighting the performance of our method as superior against that of other rep-
resentation learning techniques across all three target domains. Our approach
outperforms the SOTA fine-tuning method RICK in the Sunglasses category, but
faces challenges in the Babies and MetFaces. The notable discrepancy in Met-
Faces arises from its inherent variety, including sketches, ceramics, and ancient
paintings, with an uneven distribution of these sub-domains in the full dataset.
While other methods may achieve lower FID scores by excelling in dominant sub-
domains, they fail to capture the full range of MetFaces variety. Our approach,
CRDI, however, consistently generates samples across all sub-domains within
MetFaces (shown in Fig.5). To verify this, we utilize MC-SSIM, which assesses
the distribution of generated samples across all target sub-domains. The results
in Table 2 indicate a clear domain coverage advantage of our method over others.
Despite not always achieving the lowest FID scores, broader coverage highlights
its effectiveness in handling complex, diverse domains such as MetFaces.

4.2 Further Analysis and Discussion

Evaluation on Degree of Rigidity In Sec. 3.2, we theoretically analyzed the
impact of η on the quality and diversity of diffusion generation. In Sec. 4.1,
we qualitatively and quantitatively analyzed the impact of η on reconstruction.
Here, we further explore the effects of varying η on the generation quality and
diversity on Babies, the quantitative results shown in Fig. 6 (left). For both FID
and Intra-LPIPS, we observe an initial optimization as η increases, while the
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Fig. 6: Left: FID (↓) (blue) and Intra-LPIPS (↑) (red) for different degree of rigidity
(η value) in target domain Babies. Right: Evaluating the impact of removing each
components (Comps.), SGE and noise perturbation (Ptb.) by calculating the FID(↓)
across three target domains.

quality of the generated images remains consistent across different η values, with
minimal artifacts. This pattern can be attributed to a slight data leakage issue
when η is low, which diminishes as η increases (shown in Fig. 3), allowing both
FID and Intra-LPIPS to reach their optimal values. However, further increasing
η imposes a stricter constraint, making the generated images align more with
the given samples. This leads to a divergence from the test set distribution,
resulting in an increased FID and reduced diversity. This property allows us to
adjust between quality and diversity based on actual needs.

Moreover, as shown in Tab. 1 and Fig. 1, our good performing category,
Babies, in terms of FID has the lowest SSIM score during reconstruction. Some
fine-grained details (such as the collar) cannot be reconstructed, even when all
randomness is removed during generation. We believe that the observed variation
can be attributed to the distinct roles that SGE plays in generating samples
across various categories, determined by the compatibility of the prior knowledge
of the source model with the target domain. For generating images of Babies,
SGE serves as a guiding mechanism, as the prior knowledge of the source model
aligns with baby images. Conversely, for target domains vastly different from
the source domain, it is challenging to apply the prior knowledge learned from
the source domain, hence requiring SGE to store more semantic information and
thus leaving little room for further diversification in generation.
Component Effectiveness Evaluation We evaluated the impact of remov-
ing each components by calculating the FID scores across three target domains,
quantitative results are shown in Fig. 6 (Right). It can be observed that the
removal of each component has a significant negative effect on the model per-
formance measured in FID. Removing SGE, our model is reduced to an uncon-
ditional diffusion model, which can only generate samples from source domain.
For SGE only (remove all randomness), it is reduced to the same setting as for
reconstruction only. More visual examples refer to supplementary material.
From Few-Shot to One-Shot Till now, our experiments have leveraged 10
images from the target domain for domain adaptation. However, as described
in Sec. 3.4, our method is adaptable with just one image. To demonstrate the
effectiveness of our model under this extreme setting, we compared our results
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Table 3: Comparisons of model performance from few-shot to one-shot given by the
k value in k-shot adaptation on generation quality, evaluated by the FID score (↓).

1-shot 5-shot 10-shot

Methods Babies Sunglasses Babies Sunglasses Babies Sunglasses

GenDA 105.13 83.70 65.47 45.44 62.14 35.64
Ours 100.85 74.60 55.87 31.35 48.52 24.62

with GenDA [30] (only compatible method) across Babies and Sunglasses in
Tab. 3. It is evident that our method outperforms GenDA in both domains.
Comparison with Foundation Model based Adaptation Methods

Model Backbone Babies Sunglasses MetFaces

LoRa [9] SD-1.5 143.78 88.38 99.65

DB [40] SD-2.0 172.89 160.56 187.23

T-I [15] SD-2.0 348.72 156.99 297.47

CRDI DDPM 48.52 24.62 94.86

Table 4: Comparing FID (↓) of CRDI (ours)
vs. DreamBooth (DB), Textual-Inversion (T-I)
and LoRa on Babies, Sunglasses and MetFaces.

While foundation models like Sta-
ble Diffusion [39] can generate di-
verse images, they lack precise con-
trol on producing samples that be-
long to a specific domain. Adapta-
tion methods based on foundation
model such as DreamBooth [40],
Textual-Inversion [9] and LoRA
[15], despite under few-shot set-
tings, are primarily designed for
subject-level image editing, resulting in poor performance on FSIG metrics.
Moreover, foundation models may violate FSIG definition due to potential expo-
sure to target domains during training. Despite these limitations, CRDI signif-
icantly outperforms these methods as shown in Tab. 4, demonstrating superior
capability in generating samples that accurately represent the target domain.
Visual examples and implementation detail refer to supplementary material.

5 Conclusion

In this work, we present a novel framework to tackle the FSIG challenge, show-
ing that limited data can be better utilized through distinct reconstruction and
diversity enhancement phases. Our approach achieves SOTA performance us-
ing diffusion models, bypassing GANs. This represents a crucial advancement
in FSIG technology by offering a measurable balance between the quality and
diversity of generated images, and directly assessing the transferability of source
models to target domains. Additionally, our method is scalable, compatible with
current diffusion models, and optimized for efficiency and lightness.
Limitations & Future Work Our model exhibits reduced effectiveness in re-
constructing sketches compared to Bedrooms, despite bedrooms being less simi-
lar to the RGB facial images (FFHQ). Looking forward, incorporating CLIP [36]
as an additional gray-scale image guidance could allow our SGE to focus more
on semantic information relevant to the target domain, potentially improving
performance across diverse domains without compromising FSIG constraints.
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