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A Appendix

A.1 Model Details and Hyperparameters

Unless otherwise noted, we follow the public implementation5 of [34]. Below, we
provide additional details.
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Figure 6: Computing
<subject> and <object>
embeddings with separate
MLPs is necessary for
good performance.

Relationship Attention Architecture. To obtain
query, key, and value embeddings from the image em-
beddings for the Relationship Attention layer, we use
3-layer MLPs with no change in feature dimensional-
ity, GeLU hidden activations [14], and a skip connec-
tion from the input to the output embedding. Layer-
Norm [2] is applied to the final output in the MLPs.
To obtain the relationship embedding, <subject> and
<object> embeddings are summed, normalized by
LayerNorm, and processed by another 2-layer MLP
(not shown in Figure 2). We found model performance
to be robust to the details of the Relationship At-
tention layer, e.g. the hyperparameters of the MLPs,
and it may be possible to simplify the design further.
However, as noted in the main paper, <subject> and
<object> embeddings must be computed with different projections to model the
asymmetry between <subject> and <object> in the relationship. If the same
projection were used to compute a single embedding to represent both <subject>
and <object>, the model could not distinguish between e.g. "person riding
horse" and "horse riding person". Figure 6 confirms experimentally that
sharing the MLP for subjects and objects performs poorly. With a shared MLP,
the model struggles to learn and reaches a low final score.

Relationship Selection. In the Relationship Attention layer, we perform two
rounds of top-k selection as depicted in Figure 2: First, we select the top 512
object instances, using the diagonal entries of the relationship score matrix as
“objectness” scores. This reduces the size of the relationship score matrix from
N ×N (where N is the number of image encoder output tokens, i.e. object pro-
posals) to 512 × 512. From this matrix, we then select k relationships, where
k = 214 = 16384 unless otherwise noted. Additionally, we always compute em-
beddings for the 512 self-relationships along the diagonal (which represent object
instances), since these embeddings will be necessary to classify the object cate-
gories of the <subject> and <object> boxes. Model performance is remarkably
robust to the value of k both during training and inference. We did not observe
a significant reduction in performance for k as low as 1024 either just during
inference (Section 4.5) or during training and inference.

Data Augmentation. For data preprocessing and augmentation, we follow [34]
with some exceptions to account for the differences between general object de-
tection and relationship detection data: For object detection datasets, we apply
5 https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit

https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
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random left/right flip and random crop augmentation, up to 3 × 3 mosaics,
and random negative labels. For relationship detection datasets, we replace the
random crop with random resizing between 0.5× and 1.0× of the original size,
since cropping may cause label inaccuracies if one member of a relationship is
cropped off. For GQA200, we also remove random left/right flipping since the
dataset contains spatial relationship annotations in the form of “<subject> to
the left of <object>”. We do not use random prompt templates such as "a photo
of a {}" or prompt ensembling for any datasets.

Data Rebalancing. For most of our experiments, we use the training data as-is
without special treatment of the skewed object or predicate class distributions.
Only for the model on the last line in Table 2, we perform simple rebalancing
as follows, to show the potential of combining our method with orthogonal ap-
proaches focusing on data rebalancing: We first count the number of occurrences
of each predicate in the training set to obtain its frequency. Then, during train-
ing, we randomly drop relationship annotations with a probability equal to its
frequency (capped at 0.95 for the most frequent predicates).

Training Details. The B/32 and B/16 models are trained on images of size
768× 768 at batch size 256 for 200’000 steps with the Adam optimizer [22] and
a cosine learning rate schedule with a maximal learning rate of 5 × 10−5 and a
1000-step linear warmup. As in [34], the text encoder is trained with a learning
rate of 2× 10−6 instead. For the L/14 model, the image size is 840× 840, batch
size is 128, and the maximal learning rate is 2× 10−5.

Speed Benchmarking. For the speed benchmarking in Figure 3, we assume
a scenario in which a stream of images (e.g. a video feed) needs to be processed
with a fixed set of 1000 text queries (i.e. 1000 object and predicate classes). We
therefore report the time needed to process a new image, given pre-computed
text query embeddings. We measure the time from calling the model with a
single image (batch size 1) until the predictions are ready, using an NVIDIA
V100 GPU. We measure 30 trials and report the median result.

A.2 Additional Experimental Results

Zero-shot GQA. To assess zero-shot generalization to unseen classes, we report
the performance on the least-frequent 1503 object and 211 predicate classes in
GQA, i.e. those not included in GQA200 and therefore unseen during training
(Table 7). Given the large vocabulary and the difficulty of zero-shot predicate
classification, we evaluate the model without graph-constraint, allowing four
predicate predictions per <subject-object> pair. Although the performance
of our model in this scenario is nontrivial, it is significantly lower than on seen
classes (Table 4). We therefore suggest using the least-frequent GQA annotations
in this manner as a challenging benchmark for future work on zero-shot VRD.

Recall@K. We provide results using the Recall@K metric (i.e. pooling all
classes before recall computation) in Table 8. Note that this metric weighs
classes by their frequency and is therefore not suitable for assessing long-tail
performance [6, 46].
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Performance without Graph-Constraint. All results in the main paper for
VG150 and GQA are computed with graph constraint. Table 9 provides these
results without graph constraint.

Model mR@50 mR@100

Scene Graph Generation (unseen classes)
SG-ViT (CLIP: ViT-B/32) 1.5 2.2
SG-ViT (CLIP: ViT-B/16) 1.9 2.3
SG-ViT (CLIP: ViT-L/14) 2.2 2.8

Table 7: Performance on the GQA test set (unseen classes only). Evaluated
without graph-constraint.

Visual Genome 150 GQA200
R@20 R@50 R@100 R@20 R@50 R@100

SG-ViT (CLIP: ViT-B/32) 19.8 28.1 34.5 16.4 22.9 27.9
SG-ViT (CLIP: ViT-B/16) 20.2 28.8 35.4 16.6 23.4 28.9
SG-ViT (CLIP: ViT-L/14) 21.8 31.1 38.3 18.6 26.6 32.6

Table 8: Evaluation on Recall metrics. Evaluated without graph-constraint.

Visual Genome 150 GQA200
mR@50 mR@100 mR@50 mR@100

SG-ViT (CLIP: ViT-B/32) 20.5 24.8 21.9 26.1
SG-ViT (CLIP: ViT-B/16) 21.4 26.6 23.2 27.4
SG-ViT (CLIP: ViT-L/14) 23.9 29.5 26.7 32.8

Table 9: Evaluation without graph-constraints.
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A.3 Additional Qualitative Examples

Figure 7 shows additional qualitative examples of relationships predicted by
SG-ViT on VG150 and illustrates some error modes. The bounding boxes for
each node of the relationship edge accurately captures the extent of the object
instances while in each case aligning the grammatical <subject> and <object>
in the correct direction, denoted by the shaded boxes lime and red respectively.
The only false positive in this set of images is in Figure 7c where the B/32 model
scores the relationship “light of bike” with the subject box selecting the bright
licence plate of the motorcycle instead of the brake light.

A more frequent error mode is the confusion of singular instances and groups
of instances. In some cases this can be put down to ambiguity in language.
For example in Figure 7d the subject text “fruit” could be referring to super-set
category that includes both oranges and apples and also shares the same word for
both singular and plural. In other cases we see that this confusion also appears
in the human annotations, e.g. in Figure 7e and Figure 7f. Such inconsistency
is likely common in the training set, which may impact the model’s ability to
distinguish singular and plural.

False negatives are another error mode, in which the model predicts no boxes,
or assigns very low confidence to predictions. Two such examples are shown
in Figure 7g and Figure 7h where the relationship descriptions are “snow on
mountain” and “elephant near giraffe” respectively. On these examples, the model
predicts no relationships with a score above 0.001, which we use as a threshold
for visualization for all examples shown here. In the first case, the snow is only
recognized by L/14 model and for the latter case neither model recognizes the
decorations on the cup-cakes as either an elephant or giraffe.

A.4 Additional Graph Visualization Examples

Figure 8 illustrates the ability of SG-ViT to generate entire scene graphs on novel
images. Each image shows all relationships with a score above 0.06, using the
object categories and predicates from the full Visual Genome dataset to query the
model. Nodes on the left are drawn at the center of the corresponding bounding
box. Relationship predicates are shown in the graph visualization on the right.
These visualizations are intended for qualitative assessment. For downstream
use of the scene graph, further post-processing, e.g. non-maximum suppression,
may be applied.
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Relation GT SG-ViT (B/32) SG-ViT (L/14)

(a)
bottle on
sink

(b)
number on
post

(c)
light of bike

(d)
fruit on
table

(e)
plane with
wing

(f)
food on
plate

(g)
snow on
mountain

(h)
elephant
near giraffe

Figure 7: Additional qualitative examples from VG150 test split [26, 55] illustrating
box outputs of the SG-ViT B/32 and L/14 models for the given text. Rows (a-b)
show true positives with only minor differences in the object bounding boxes. Row
(c) shows a minor error in subject from the B/32 model. Rows (d-g) illustrate the
challenge of selecting singular or plural entities while rows (g-h) show examples where
the relationship score is very low (i.e. no output if triplet score < 0.001). In all cases
the <subject> is lime and the <object> is red.
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(a) Photo by Joanna Boj on Unsplash.

(b) Photo by Vadim Sherbakov on Unsplash.

(c) Photo by CoWomen on Unsplash.

(d) Photo by Nachelle Nocom on Unsplash.

Figure 8: Additional graph visualizations on unseen images.

https://unsplash.com/photos/man-standing-beside-espresso-maker-MhOoD_h90ks
https://unsplash.com/photos/two-flat-screen-monitor-turned-on-near-organizer-rack-inside-the-room-RcdV8rnXSeE
https://unsplash.com/photos/three-women-sitting-around-table-using-laptops-7Zy2KV76Mts
https://unsplash.com/photos/woman-sitting-on-bed-watching-by-the-window-during-winter-51adhgg5KkE
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