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Figure 1: Relationships detected by our method on an unseen image. The top rela-
tionships by confidence score are shown. Photo by Spacejoy on Unsplash.

Abstract. Visual relationship detection aims to identify objects and
their relationships in images. Prior methods approach this task by adding
separate relationship modules or decoders to existing object detection ar-
chitectures. This separation increases complexity and hinders end-to-end
training, which limits performance. We propose a simple and highly ef-
ficient decoder-free architecture for open-vocabulary visual relationship
detection. Our model consists of a Transformer-based image encoder that
represents objects as tokens and models their relationships implicitly.
To extract relationship information, we introduce an attention mecha-
nism that selects object pairs likely to form a relationship. We provide a
single-stage recipe to train this model on a mixture of object and relation-
ship detection data. Our approach achieves state-of-the-art relationship
detection performance on Visual Genome and on the large-vocabulary
GQA benchmark at real-time inference speeds. We provide ablations,
real-world qualitative examples, and analyses of zero-shot performance.

†Work done while at Google DeepMind.
?Advising project leads in alphabetical order.

https://orcid.org/0000-0002-7305-2667
https://orcid.org/0000-0003-2203-2946
https://orcid.org/0000-0002-8428-9264
https://orcid.org/0000-0002-6428-8256
https://unsplash.com/photos/brown-wooden-bed-frame-with-white-and-brown-bed-linen-umAXneH4GhA


2 T. Salzmann et al.

1 Introduction

A fundamental goal of computer vision is to decompose visual scenes into struc-
tured semantic representations. A commonly studied task towards this goal is
object detection, in which objects in an image are localized by bounding boxes
and classified into semantic categories. However, a scene description also in-
cludes the semantic relationships between objects. This gives rise to the task
of visual relationship detection (VRD, [4, 6, 32, 48, 49, 55]). In VRD, the model
detects objects and infers pairwise relationships between them in the form of
<subject-predicate-object> triplets3 [32].

Detecting both objects and their relationships allows the construction of a
scene graph [19,30,48] in which objects are represented as nodes and their rela-
tionships as edges. Scene graph generation (SGG) has wide-ranging applications
in robotics [1,5,11,17,38,42] and image retrieval [19,27]. Increasingly, structured
scene representations are also employed to provide grounding and explainability
to multimodal large language models [15,36,59].

Prior work typically draws a distinction between object detection and re-
lationship prediction. Detection is performed either as a wholly separate step
before relationship prediction [8, 32, 48, 52, 55, 57], or by separate model parts
such as “relationship decoders” that are responsible for modeling the interac-
tions between objects [7,49,61]. This distinction makes it hard to optimize such
models end-to-end for VRD [61]. In contrast, we propose an encoder-only ar-
chitecture that models objects and relationships jointly, directly in the image
encoder. Our architecture performs open-vocabulary relationship detection and
can be trained end-to-end on arbitrary mixtures of object detection and rela-
tionship annotations.

Our model builds on a Transformer-based encoder-only object detector [34] in
which the output tokens of the image encoder directly represent object proposals.
From these tokens, class embeddings and bounding boxes are decoded with light-
weight heads. Our insight is that this architecture is perfectly set up to learn
relationships between objects directly in the image encoder, without the need for
additional relationship-specific stages. This is because the existing self-attention
in the encoder already models all-to-all pairwise interactions between the object
proposal tokens.

To access information about the relationship between two of these tokens, we
combine the embeddings corresponding to the <subject> and <object> token
using a new Relationship Attention layer. Obtaining relationship embeddings
for all possible pairwise combinations of object proposal tokens would be com-
putationally infeasible. To reduce the number of combinations, we introduce
a self-supervised hard attention mechanism that selects the highest-confidence
<subject-object> pairs at a computational cost comparable to a single self-
attention layer. We show how to directly supervise the attention scores of this
mechanism without the need to propagate gradients through the hard selection.

3 We use <fixed width font> to distinguish the grammatical terms <subject> and
<object> from generic use of the word object as in object detection.
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An additional benefit of our design is that it disentangles object names from
relationship predicates during inference. In contrast to prior open-vocabulary
methods [53,54,61], our model can embed object and predicate texts separately
and generate confidence scores efficiently for all possible <subject-predicate-
object> combinations.

In summary, we make the following contributions:

1. An efficient architecture for open-vocabulary visual relationship detection.
2. A single-stage recipe for joint object and relationship detection training.
3. Efficient, disentangled object and relationship inference.
4. Analysis of inference speed, ablations, and qualitative examples.

Our method achieves state-of-the-art visual relationship detection perfor-
mance on the Visual Genome dataset (26.1% mR@100 with graph constraint)
and on the large-vocabulary GQA benchmark. It provides strong results while
being significantly simpler than prior approaches to visual relationship detec-
tion.

2 Related Work

Below, we review the main approaches to VRD that are relevant to our work.
For a comprehensive overview of the field, we refer to [27].

Detector-Agnostic Relationship Detection. Historically, many works on
VRD assume that object detections are given, such that the task reduces to
inferring relationships between the objects. These “detector-agnostic” methods
use off-the-shelf detectors such as Faster-RCNN [39] to obtain boxes and box
embeddings and infer a scene graph from them. Early work on large-scale VRD
employed word embeddings to improve relationship generalization [32] and graph
inference methods such as message passing for SGG [48]. More recent methods
leverage relationship co-occurrence statistics [55] and address the long-tailed
nature of the training data [8, 52,57].

End-to-End Relationship Detection. A fundamental limitation of the detec-
tor-agnostic approach is that object detection and relationship prediction are
treated separately and cannot learn from each other. Overcoming this limitation
has recently motivated the development of end-to-end architectures in which
objects and relationships are predicted jointly by a single model [7, 20, 29, 61].
All of these models have in common that they use a Transformer [47] decoder
to predict object and relationship embeddings. The decoder represents object
proposals with query embeddings that can cross-attend into image embeddings.
The literature on object detection suggests that this choice may be problematic,
because the query embeddings can be difficult to initialize, which can lead to
unstable and slow optimization [3,34,43,50,58,63]. To avoid this issue, we design
an encoder-only architecture in which both object and relationship embeddings
are computed directly from the output tokens of a Vision Transformer [10] image
encoder, building on an idea from object detection [34]. In contrast to prior mod-
els [61], this allows us to train the model end-to-end on object and relationship
annotations simultaneously.
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Long-Tailed and Open-Vocabulary Relationship Detection. Object clas-
ses in the natural world follow a long-tailed distribution [12,62], and this is com-
pounded in VRD due to the combination of subject, object, and predicate in a
relationship [27,48,49]. A large number of VRD methods specifically aim to ad-
dress this issue, for example with debiasing losses [52], data augmentation [57],
or data resampling [8]. Additionally, while VRD models historically assumed a
fixed set of object and predicate classes, recent works add open-vocabulary capa-
bilities [13, 41, 54, 61]. These models leverage pretrained vision-language models
such as CLIP [18, 37, 51, 56] to inherit their natural-language understanding.
Instead of learning a fixed set of classes, open-vocabulary models predict class
embeddings that can be compared to the text embeddings of arbitrary object
or predicate descriptions for classification. Here, we employ a pretrained vision-
language backbone and combine it with a carefully designed, lightweight rela-
tionship detection head to preserve and transfer semantic knowledge from the
backbone pretraining to VRD. This allows our model to achieve strong results
on the large-vocabulary GQA benchmark [16] (Section 4.3).

While we focus on architectural improvements, another line of work addresses
the scarcity of training data for VRD. For example, RLIP [53] and RLIPv2 [54],
which focus on human-object interaction [4], propose relationship-focused image-
text pretraining and self-training, which yield large improvements in VRD per-
formance. These works are orthogonal to our contributions and can be combined.

3 Scene-Graph ViT

We propose an architecture for open-vocabulary relationship prediction in which
both objects and the relationships between them are handled as “first-class cit-
izens” directly in a single-stage process within the model backbone. We build
on an encoder-only architecture for object detection [34] and adapt it to rela-
tionship prediction by adding a specialized attention layer. This layer exploits
the pairwise structure between existing object embeddings to obtain relationship
embeddings as schematized in Figure 2 and described below.

3.1 Encoder-Only Open-Vocabulary Object Detection

We briefly review the detection architecture that forms the basis of our model [34].
The model consists of Transformer-based [10] image and text encoders that are
contrastively pretrained on a large number of image and text pairs [37]. The
image encoder is adapted to detection by removing the final pooling layer and
adding heads that predict bounding boxes and class embeddings directly from
the output tokens of the image encoder. For open-vocabulary object classifi-
cation, the embeddings computed by the class prediction head are compared
to text encoder embeddings of object descriptions. This architecture achieves
strong open-vocabulary object detection performance [33, 34] and does not suf-
fer from the training instabilities observed in some encoder-decoder detection
models [3, 34,43,50,58,63].
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Figure 2: For relationship selection, image tokens are first projected using two
lightweight MLPs to produce <subject> and <object> embeddings. A relationship
score is then computed as the inner product between all <subject> and <object> em-
beddings. Relationships are filtered by first selecting the top object instances, using
the scores along the diagonal to represent instance likelihood. Among the remaining in-
stances, the top <subject-object> pairs are selected using the off-diagonal scores. This
yields a set of relationship triplets, each consisting of a <subject> index, an <object>
index, and a relationship embedding that is computed by summing the respective
<subject> and <object> embeddings. For classification, the relationship embeddings
are compared against text embeddings of object class or predicate text descriptions.

3.2 Extension to Relationship Prediction

In the architecture described above, each image encoder token represents an
object proposal that captures per-object information. Importantly, the encoder
consists of self-attention layers which, by design, model all pairwise interactions
between these tokens. We therefore hypothesize that information about object
relationships can be learned directly in the image encoder. To extract this in-
formation in the form of <subject-predicate-object> triplets, we introduce
two MLPs that transform vision encoder output tokens into <subject> em-
beddings si and <object> embeddings oj (Figure 2). Using different MLPs for
<subject> and <object> is crucial to break symmetry in subsequent processing
(Appendix A.1).

An embedding representing the relationship between two object proposals
(encoder tokens) can then be obtained simply by element-wise addition of their
<subject> and <object> embeddings. Obtaining relationship embeddings for all
N2 <subject-object> pairs, where N is the number of object proposals, would
be computationally infeasible. We therefore introduce a Relationship Attention
layer that performs hard attention to select the <subject-object> pairs most
likely to form a relationship. This layer computes an attention-like score pij =
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sio
T
j , where si and oj are the embedding vectors of <subject> i and <object> j,

and pij represents the likelihood that a relationship between <subject> i and
<object> j exists. By computing this score for all <subject-object> pairs,
we obtain an N×N matrix, from which we select the top k pairs.4 For these
k pairs, we compute relationship embeddings rij = LayerNorm(si + oj). To
classify the relationship of a pair, its relationship embedding is compared to text
embeddings of relationship predicates. We use the embeddings where <subject>
and <object> are identical (ri=j) to represent object instances, and predict
object classes from them. Boxes are predicted from the corresponding image
encoder output tokens (see Figure 2).

The Relationship Attention layer therefore identifies object pairs to focus on
for relationship classification, by computing a hard attention with <subject>
embeddings as queries and <object> embeddings as keys. Since the hard selec-
tion is not differentiable, gradients from the relationship prediction cannot be
used directly to train this layer. Instead, the relationship score is self-supervised
to predict the maximum <predicate> class probability that will later be pre-
dicted for the relationship at the classification stage (Section 3.3).

3.3 Training

The image and text encoders of our model are initialized from a vision-language
model that was contrastively pretrained on a large number of image-text pairs [37].
After adding the Relationship Attention as well as the object bounding box and
class prediction heads, the model is jointly trained on a mixture of object and
relationship detection datasets in a single training stage (Section 4.1), using the
losses described below.

Bipartite Matching. Bipartite matching between object predictions (ri=j)
and ground-truth annotations is performed based on a cost consisting of the
object classification loss and the box prediction losses as in [3]. This matching
between objects also establishes a matching of predicted to ground-truth rela-
tionship predicates, since a relationship is uniquely identified by the <subject>
and <object> indices i and j. Unmatched predictions are trained to predict low
scores for all classes and incur no box prediction loss.

Box Prediction Losses. For bounding box regression, we use the L1 and
generalized intersection-over-union (gIoU) losses described in [3].

Object and Predicate Classification Loss. For both object category and
predicate classification, we use a sigmoid cross-entropy loss as in [34]. This loss
is computed between the ground truth classes and logits obtained by computing
the inner product of the relationship embeddings rij selected by the Relationship
Attention layer with the text embeddings of the class names. For embeddings
corresponding to individual objects (ri=j), the class name is the object category
or description. For embeddings corresponding to relationships (ri6=j), we use the
predicate text as class name. This differs from prior work [53, 54, 61], which

4 This selection reduces the number of relationships that need to be processed, e.g.,
from N2 = 36002 to k = 16386 (99.9% reduction) for our ViT-L/14 model.
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uses the full <subject-predicate-object> triplet description. Our approach
has the advantage of disentangling object category and predicate names, which
allows for more efficient inference since object category and predicate texts are
embedded separately.

Relationship Score Loss. To select only the most promising embeddings
for further processing, the Relationship Attention layer predicts a score pij that
represents the likelihood that the corresponding <subject-object> pair forms
a relationship (if i 6= j), or that the corresponding object exists in the image (if
i = j). This score is trained with a sigmoid cross-entropy loss against targets
provided by the model itself, namely the maximum probability predicted for
any class for the corresponding rij embedding [33]. In this way, the relationship
score is trained to predict the class probability of a potential embedding rij
before actually computing and classifying the embedding. Note that this loss
can only be computed for those objects and relationships that ultimately get
selected for further processing. We found this to provide sufficient supervision.

The final loss is an equally weighted sum of four components: (1) classification
loss, (2) L1 box loss, (3) gIoU box loss, (4) relationship score loss.

4 Experiments

4.1 Experimental Setup

Datasets. We use the following datasets for training or evaluation:
Visual Genome [26] is the largest VRD dataset, labeled with 2.3M triplet

relationships across 108K images. However, as Visual Genome includes noisy
annotations, the community commonly evaluates VRD on a cleaned version of
the dataset [55] where the label space is reduced to the 150 most frequent object
classes and the 50 most frequent predicate classes. This dataset is commonly
referred to as Visual Genome 150 (VG150).

GQA [16] uses the same image corpus as Visual Genome, but is more diversely
labeled, with 1703 object classes (1704 including a background class) and 310
predicates. Spatial relationships like “to the left of” are automatically labeled
based on the 2-D spatial arrangement of bounding boxes. Similar to VQ150,
GQA200 is a reduced and cleaned version of GQA with 200 object classes and
100 predicate classes [9].

HICO-DET [4] is a dataset which focuses on a more specialized subset of vi-
sual relationships, specifically interactions between humans and objects. HICO-
DET contains 50k images and is exhaustively annotated for 600 defined human-
object interaction (HOIs).

Objects365 [40] (O365) is a large scale object-detection dataset with 365
object categories across two million images.

Open X-Embodiment [35] (OXE) dataset is targeted towards learning vision
language action policies for robotics. OXE lacks bounding box annotations which
precludes quantitative evaluation, but it represents both a visually different set-
ting compared to the standard VRD benchmarks and a promising application
area, so we use it for qualitative evaluation.
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VG150 VG HICO GQA200 GQA Objects365

% in training mixture 12.5% 12.5% 12.5% 12.5% 0% 50%
# removed 6587 17727 729 15361 18801 15306

Table 1: Training data mixture. # removed indicates the number of images that
were removed from the official training split due to overlap with data we evaluate on.

Training. Unless otherwise noted, we train models on a mixture of VG, VG150,
GQA200, HICO, and O365 in the proportions show in Table 1. The B/32 model
is trained for 200’000 steps at batch size 256 (further details in Appendix A.1).
Since the datasets we use share similar image sources, there is some overlap
between the official training and evaluation splits. To ensure that no evaluation
images are used for training, we rigorously filter all training datasets to remove
images present in any of the test splits for all datasets we evaluate on, i.e. VG150,
GQA, GQA200, and HICO. We use an image similarity filter that also identifies
non-exact matches [24]. Table 1 shows the number of images removed from each
training split. Note that not all prior work performs similar deduplication.

Evaluation Procedure and Metrics. Prior work presents a diverse range of
evaluation metrics, often tailored to specific datasets. For non-exhaustively la-
belled datasets, like Visual Genome and GQA, using precision-based metrics is
inherently inconclusive. Thus, the community has adapted a Recall@K metric for
these datasets, whereK denotes a fixed budget of <subject-predicate-object>
triplets on which the recall is computed. However, this metric is biased towards
the more frequent <predicate> classes in the dataset [6, 46]. Therefore, recent
approaches use mean Recall@K, which calculates Recall@K separately for each
<predicate> class in the test data and then averages the results.

For exhaustively labeled datasets like HICO, it is feasible to use precision-
based metrics such as mean Average Precision (mAP), a well-established metric
in object detection. For HICO, the mean is taken over the 600 possible HOI
triplets. Besides the overall metric, we also report results separately for rare
(< 10 occurrences) and non-rare (≥ 10 occurrences) HOIs as mAPr and mAPn.

Further, evaluation can be “graph-constrained”, where only a single predic-
tion can be made per detected object pair, or “graph-unconstrained”, where any
number of predictions can be made per pair. Existing works evaluating on Visual
Genome and GQA datasets partially lack a clear distinction between graph-
constrained and unconstrained evaluation. For our models, we report graph-
constrained results in the main paper, which reflects the dominant approach used
in other studies. Results without graph-constraint are reported in Appendix A.2.
For the HICO dataset, we follow the established evaluation procedure [4] that
inherently represents a graph-unconstrained evaluation.

Multiple implementations of the aforementioned metrics exist, often showing
differences in results. To compare fairly and directly against a wide range of
prior approaches we identified the PyTorch evaluation procedure of [45] as the
most prevalent routine for recall-based metrics and replicated their procedure
in JAX with numerical accuracy. Similarly, for HICO, we numerically reproduce
the original Matlab evaluation procedure outlined in [4] in JAX.
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Model Backbone mR@50 mR@100

RelTR [7] ResNet-50 6.8 10.8
Transformer + CFA [28] ResNeXt-101 12.3 14.6
VCTree [46] + IETrans + Rwt [57] ResNeXt-101 12.0 14.9
Motif [55] + IETrans + Rwt [57] ResNeXt-101 15.5 18.0
GPS-Net [31] + IETrans + Rwt [57] ResNeXt-101 16.2 18.8
SG-Transformer [52] + IETrans + Rwt [57] ResNeXt-101 15.0 18.1
Sgtr [29] ResNet-101 15.8 20.1
DT2-ACBS [8] ResNet-101 22.0 24.4

UniVRD CLIP: ViT-B/32 9.6 12.1
UniVRD CLIP: ViT-B/16 10.9 13.2
UniVRD CLIP: ViT-L/14 12.6 14.5

SG-ViT CLIP: ViT-B/32 15.0 18.1
SG-ViT CLIP: ViT-B/16 15.7 19.3
SG-ViT CLIP: ViT-L/14 17.8 21.8
SG-ViT + simple predicate rebalancing CLIP: ViT-L/14 22.3 26.1

Table 2: Performance on the Visual Genome 150 test set. We use graph-
constrained evaluation (one predicate prediction per <subject-object> pair). For the
last row (“+ simple text rebalancing”), the model was briefly fine-tuned on VG150 data
with rebalanced predicate frequencies (see Section 4.2 and Appendix A.1).

Exhaustive Relationship Evaluation. Previous methods [53,54,61] entangle
objects and relationships in a single representation. Consequently, these methods
score their embeddings against the full <subject-predicate-object> triplet.
While this is feasible for datasets with a low number of possible triplets, like
HICO with 600 defined relationships, it quickly becomes computationally in-
tractable for datasets with a larger vocabulary of objects and predicates (e.g.
VG, GQA). Prior works [61] therefore evaluate only on triplets which are known
to be present in the test split, which may inflate metrics. In contrast, our method
disentangles objects and predicates (Section 3). This allows for an exhaustive
evaluation that considers all object and predicate combinations and enables ap-
plications where knowledge of possible relationships is unavailable.

4.2 Relationship Detection Performance

We use Visual Genome as our main benchmark for relationship detection. Ta-
ble 2 shows results for our models and prior work. Prior studies often achieve
reported performance through the combination of a base model with a specialized
approach to overcome the skewed data distribution (indicated as base-model +
specialization in Table 2). Our models provide strong performance even without
special treatment of the skewed predicate distribution. After brief fine-tuning on
data in which the frequency of predicate annotations was rebalanced with simple
rejection sampling (see Appendix A.1), our method improves on the prior best
method DT2-ACBS [8] by 1.7 points mR@100 (26.1 vs. 24.4). This shows that
our already-strong method may be further improved by combining it with more
advanced rebalancing methods.

We also note the large difference in performance to UniVRD [61], which
builds on the same detection architecture as our method, but adds a Trans-
former decoder-based relationship module. To disentangle whether the improve-
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Model mR@50 mR@100

LLM4SGG [21] 5.3 6.5
Neural Motif w/ GCL [9] 16.8 18.8
VCTree w/ GCL [9] 15.6 17.8
SG-Transformer w/ CFA [28] 13.4 15.3
SHA w/ GCL [9] 17.8 20.1

SG-ViT (CLIP: ViT-B/32) 15.7 18.6
SG-ViT (CLIP: ViT-B/16) 17.7 20.5
SG-ViT (CLIP: ViT-L/14) 19.3 22.9

Table 3: Performance on the
GQA200 test set. Graph-constrained
evaluation.

Model mR@50 mR@100

Scene Graph Classification
IMP [25,44,48] 0.5 0.7
Neural Motif [25,44,55] 0.8 1.2
Unbiased TDE [25,45] − 0.7
RTN [25] − 1.4
MP [23] − 2.8
Transformer w/ EBM [44] 1.3 1.8

Scene Graph Generation
SG-ViT (CLIP: ViT-B/32) 6.2 7.4
SG-ViT (CLIP: ViT-B/16) 6.4 7.4
SG-ViT (CLIP: ViT-L/14) 8.0 9.6

Table 4: Performance on the GQA
test set. Graph-constrained evaluation.

ments over UniVRD are due to differences in architecture or training data, we
also trained our B/32 model on the UniVRD data mixture, and still observe a
large improvement (17.4 VG mR@100 for our method vs. 12.1 for UniVRD when
trained on the same data; Table 6). This suggests that our encoder-only architec-
ture is better suited for VRD than prior decoder-based architectures [7,20,29,61].

4.3 Scaling to Large Vocabularies

Improving long-tail performance has been critical to the VRD field since the
natural distribution of relationship triplets is highly skewed [27]. A substantial
body of literature is devoted to this goal, often proposing complex loss debiasing
or data augmentation approaches [8,27,52,57]. It is therefore of interest whether
our method works well in this regime without special treatment of rare classes.
To evaluate the performance of our method on large object and predicate vo-
cabularies with a long tail of rare classes, we use the Graph Question Answering
(GQA) dataset [16]. This dataset builds on VG and expands the number of
classes and annotations. A simplified version of GQA with 200 object and 100
predicate classes, called GQA200 [9], is part of our training mixture. Our method
surpasses prior results on the GQA200 test split (Table 3), despite lacking the
specialized treatment of the data distribution that some prior methods use.

The full GQA dataset has an even larger vocabulary with 1703 object and
311 predicate classes. To our knowledge, no prior methods evaluate scene graph
generation on the full GQA dataset. Some prior methods report results on scene
graph classification, where ground-truth boxes are provided. As shown in Ta-
ble 4, our model achieves higher performance on the much harder task of scene
graph generation than prior methods on classification. We further assess zero-
shot generalization to unseen classes in Appendix A.2.

We believe that two factors contribute to the strong performance in the
open vocabulary regime: First, the simple design of the method does not impede
transfer of semantic knowledge from the pre-trained VLM backbone because it
adds only lightweight heads. In particular, we use no decoder, which could be
difficult to train and could lead to “forgetting” of pretrained representations.
Instead, most of the relationship modeling happens in the backbone, which has
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had the benefit of large-scale vision-language pretraining. Second, the open-
vocabulary design allows end-to-end training on a mix of datasets, which was
not possible for all prior methods.

4.4 Human-Object Interaction

We also evaluate our model on the specialized task of human-object interaction,
using the HICO benchmark [4]. The performance of our model is on par with
the most comparable prior method [61], but does not show similarly large im-
provements as for VG or GQA200 (Table 5). HICO has a much narrower and
more specialized vocabulary than VG or GQA (HICO evaluates on 600 pre-
specified triplets, whereas VG150 has 1.1 × 106 possible triplet combinations).
Performance on this specialized task may benefit less from transfer of pretrained
representations and may instead be limited by the amount of task-specific train-
ing data. This is supported by the fact that the recent state-of-the-art method
for HICO pretrains on large amounts of person-focused pseudo-labels [54].

4.5 Ablations
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Figure 3: Model speed
and VRD accuracy by
number of selected rela-
tionships k. Speed is rela-
tive to a non-VRD object
detector [34].

Inference Speed and Number of Predicted Re-
lationships. In the following, we ablate training
datasets and model components to study the interplay
of data and architecture on the model performance.

The primary hyperparameter of our method is
the number of relationships k that are selected by
the Relationship Attention layer from all possible
<subject-object> combinations for further process-
ing. Figure 3 shows how VRD performance and infer-
ence speed depend on k.

For training, we use k = 214, which results in 71%
(B/32) to 81% (L/14) of the speed of a pure object
detection model [34] of the same size. Without top-
k selection, the model would be several times slower
(right end of top plot in Figure 3). Since the vast ma-
jority of <subject-object> pairs do not form rela-
tionships, VRD performance is essentially unaffected
by top-k selection at inference. For inference, we can
therefore use k = 211 at no loss in accuracy to achieve
90% of the speed of the object detector (for B/32 and
L/14). At this k, the B/32 model achieves 52.8 FPS at batch size 1 on an NVIDIA
V100 GPU and is therefore suitable for real-time applications.

Dataset Mixture. To assess how training data and architectural improvements
contribute to the performance of our model compared to prior work, we train
the models on a range of dataset mixtures (Table 6). The full mixture, which we
use for all experiments unless otherwise noted, includes VG, VG150, GQA200,
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Model Backbone mAP mAPr mAPn

HOTR [20] ResNet50 25.10 20.33 25.86
RLIP [53] ResNet50 32.84 26.85 34.63
RLIPv2 [54] ResNet50 35.38 29.61 37.10
RLIPv2 [54] Swin-L 45.09 43.23 45.64
UniVRD [60] CLIP: ViT-B/32 29.98 22.94 32.02
UniVRD [60] CLIP: ViT-B/16 29.98 22.94 32.02
UniVRD [60] CLIP: ViT-L/14 37.41 28.90 39.95
SG-ViT CLIP: ViT-B/32 28.86 23.72 30.39
SG-ViT CLIP: ViT-B/16 31.98 26.83 33.52
SG-ViT CLIP: ViT-L/14 38.11 33.71 39.42

Table 5: Performance on the HICO test set. Our method is on par with the
most comparable prior work, UniVRD, for overall mAP. However, our method performs
better on “rare” classes (mAPr), indicating better generalization to rarely seen concepts.
For reference, we also show RLIPv2, the state-of-the-art method on HICO. RLIPv2
proposes a self-training approach that is orthogonal and compatible to our method.

Mixture VG150 GQA200 HICO
VG VG150 GQA200 HICO O365 COCO mR@100 mR@100 mAP

Our mixture 12.5% 12.5% 12.5% 12.5% 50% − 18.1 18.6 28.9

UniVRD [61] mix − 10% − 20% 50% 20% 17.4 ↓ 4% 5.1 ↓ 73% 17.4 ↓ 8%
ours w/o O365 25% 25% 25% 25% − − 15.3 ↓ 15% 15.6 ↓ 16% 23.8 ↓ 18%
ours w/o VG − 25% 12.5% 12.5% 50% − 14.2 ↓ 22% 15.3 ↓ 18% 26.8 ↓ 7%

Table 6: Dataset Ablation. Performance of SG-ViT (B/32) trained on different data
mixtures. VG150 and GQA200 evaluation is graph-constrained, HICO is unconstrained.

HICO and O365. To allow direct comparison to UniVRD [61], we also train on
their mixture (VG150, HICO, O365, COCO) and find that our model still per-
forms better on VG150 by a large margin (18.1 mR@100 vs 12.1 for UniVRD for
B/32 models). Since UniVRD uses the same image and text encoding backbones
as our model, this result suggests that our encoder-only model with Relationship
Attention is an advance over decoder-based relationship architectures. We fur-
ther find that including both pure object detection (O365) and large-vocabulary
VRD data (VG) benefit all metrics.

Object Detection Performance. A necessary step towards good relation-
ship detection performance is accurate object detection. In our architecture,
object detection is treated as a special case of relationship detection in which
the <subject> is identical to the <object>. We validate this design by training
the model only on detection datasets without relationship annotations, using
the same dataset mixture as the OWL-ViT [34] model (Objects365 and Visual
Genome, [34]). We find that our model achieves a similar object detection per-
formance as OWL-ViT (21.9% vs. 22.1% mAP and 18.3% vs. 18.9% mAPr on
LVIS [12]), indicating that the Relationship Attention design does not interfere
with object detection.



Scene-Graph ViT 13

Relation GT SG-ViT (B/32) SG-ViT (L/14)

(a)
building
near track

(b)
light on bus

(c)
snow on hill

(d)
bottle in
door

Figure 4: Qualitative examples of difficult edge-cases from VG150 test split [26, 55].
From left to right: Ground Truth, SG-ViT (B/32), SG-ViT (L/14). In all cases the
<subject> is lime and the <object> is red.

4.6 Qualitative Results

In Figure 4, we visualize qualitative examples to highlight difficult edge cases.
Even where the model output differs from the ground truth, it is often plausibly
correct, e.g. where either the extent of an object differs with the ground truth or
there are multiple appropriate, but unannotated, relations. For example, both
models select the headlight on the bus in Figure 4b for “light on bus” as opposed
to the sun reflected off the windshield. In Figure 4c both models focus more on
the <predicate> “on” in “snow on hill” than the distinction between a mountain
and a hill. Figure 4d shows a challenging scene where the B/32 model selects the
bottle inside the open fridge while the L/14 correctly selects a water bottle in
the door for “bottle in door” while also capturing the extent of the door instance.

Furthermore, to qualitatively assess the utility of this work beyond standard
relation benchmark datasets, we also visualize some example relations applied
to data from the robotics domain, namely the OXE dataset [35]. Figure 5 shows
a real-life scene where multiple instances of the same semantic object categories
are present within the scene. The model is able to match the <predicate> to
the instances in the desired configuration. One subjective failure-case is that the
“banana outside bowl” text query had its highest scoring triplet involving a bowl
on a shelf in the background rather than the adjacent bowl. Another charac-
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Figure 5: Qualitative examples showing SG-ViT (L/14) on out-of-distribution data
from the OXE dataset [35]. In all cases the <subject> is lime and the <object> is red.
Note how the model correctly disambiguates several instances of the same class (e.g.
“bananas” and “bottle”) depending on their relationships.

teristic is that the model occasionally places boxes over groups with multiple
instances of the same semantic class when a singular word is used for either the
<object> or <subject>. This can be attributed to the similarity between word
and their plural in the CLIP embeddings and that many human annotations
from VG also confuse singular and plural (see Appendix A.3).

5 Limitations

While our model performs strongly on large-vocabulary VRD, its performance
on specialized human-object interaction detection is only on par with prior mod-
els. We discuss this limitation in Section 4.4. Further error modes are explored
qualitatively in Section 4.6 and Appendix A.3. A challenge for open-vocabulary
relationship detection models as a whole is zero-shot generalization to unseen
objects and predicates. While our model improves over prior approaches (Ta-
bles 3 and 4), there is still a large gap when it comes to entirely unseen classes
(Appendix A.2). Future research should focus on closing this gap.

6 Conclusion

We present an architecture for open-vocabulary visual relationship detection.
By combining an encoder-only design with a novel Relationship Attention layer
for efficient selection of high-confidence relationships, our architecture leverages
VLM pretraining and multi-dataset VRD training. It achieves strong perfor-
mance on standard and large-vocabulary VRD benchmarks while maintaining
pure object detection performance and adding little extra computational cost.
Due to its simplicity and strong performance, we believe that our method will
be a useful basis for further research on visual relationship detection.
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