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Abstract. Camera-based Bird’s-Eye-View (BEV) perception often strug-
gles between adopting 3D-to-2D or 2D-to-3D view transformation (VT).
The 3D-to-2D VT typically employs resource-intensive Transformer to
establish robust correspondences between 3D and 2D features, while the
2D-to-3D VT utilizes the Lift-Splat-Shoot (LSS) pipeline for real-time
application, potentially missing distant information. To address these
limitations, we propose DualBEV, a unified framework that utilizes a
shared feature transformation incorporating three probabilistic measure-
ments for both strategies. By considering dual-view correspondences in
one stage, DualBEV effectively bridges the gap between these strategies,
harnessing their individual strengths. Our method achieves state-of-the-
art performance without Transformer, delivering comparable efficiency
to the LSS approach, with 55.2% mAP and 63.4% NDS on the nuScenes
test set. Code is available at https://github.com/PeidongLi/DualBEV.
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Fig. 1: Unified Feature Transformation: Our approach considers correspondences
between BEV and image space utilizing image probability, projection probability and
BEV probability. In the 3D-to-2D strategy, HeightTrans (HT) projects pre-defined 3D
points to sample features, while in the 2D-to-3D strategy, LSS lifts image features
to 3D space, both through image probability and projection probability from different
directions. Finally, BEV probability is applied to enhance the representation of features.

https://github.com/PeidongLi/DualBEV
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(a) HeightFormer (b) FB-BEV (c) DualBEV

Fig. 2: Comparison of Fusion Strategy. ⊕ means sum function. ⊗ denotes multiplica-
tion. ⊚ denotes channel-attention-based fusion.

1 Introduction

Effective BEV object detection in autonomous driving relies on precise feature
transformation from the perspective to the BEV space, facilitated by the VT
module. Current methods predominantly employ either a 2D-to-3D or 3D-to-
2D strategy. In 2D-to-3D methods [7, 8, 10, 13, 14, 34, 38], dense 2D features are
elevated by predicting depth probabilities, but the inherent uncertainty in depth
prediction can introduce inaccuracies, particularly in distant regions. Conversely,
3D-to-2D methods [9, 15, 17–19, 30, 32, 36] often use BEV queries to sample 2D
features, leveraging Transformer [29] to learn attention weights for each 3D-2D
correspondence, while introducing computational and deployment complexities.

HeightFormer [32] and FB-BEV [16] have explored integrating both VT.
Typically, these methods employ a two-stage strategy due to different feature
transformation of dual VT. Utilizing LSS features to initialize the Transformer-
based VT, this strategy is constrained by the performance of the initial feature,
hindering seamless fusion between the dual VT. Additionally, these methods still
confront challenges in achieving real-time deployment in autonomous driving.

In this paper, we argue that both VT inherently establish correspondences
between 3D and 2D features from different views, while LSS and Transformer
serving as distinct methods for evaluating these correspondences. To unify dual
VT, we propose a unified feature transformation (illustrated in Fig. 1) appli-
cable to both 2D-to-3D and 3D-to-2D VT, evaluating the correspondences by
three probabilistic measurements: 1) BEV Probability, aimed at mitigating
the impact of blank BEV grids in feature construction; 2) Projection Prob-
ability, which distinguishes multiple correspondences, accounting for different
3D points projecting into the same 2D position; 3) Image Probability, aiding
in excluding background features during feature transformation.

Applying this unified feature transformation, we shed light on an often over-
looked approach: leveraging Convolutional Neural Network (CNN) for 3D-to-2D
VT, with the introduction of HeightTrans. Beyond its impressive performance,
we demonstrate its potential for acceleration through pre-computation, render-
ing it suitable for real-time autonomous driving applications. Meanwhile, we
enhance the traditional LSS pipeline by integrating this feature transformation,
denoted as Prob-LSS, showcasing its universality for current detectors.

Combining HeightTrans and Prob-LSS, our research introduces DualBEV
(see Tab. 1), an innovative approach that incorporates and considers correspon-
dences from both BEV and perspective view in the one-stage manner, elimi-
nating the reliance on initial features. Furthermore, we propose a robust BEV
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Table 1: Comparison of different VT formulations for obtaining the BEV feature
F at location (x, y). p means point in the BEV grid, with (u, v) representing the
corresponding image position. I denotes the image features, D represents the depth
maps, and M signifies the instance mask of the images. Q denotes BEV queries, where B
represents the binary BEV mask, and P represents the predicted BEV probability. The
notation Fda refers to the deformable attention function, while G2d denotes the bilinear
grid sampler. f denotes fusion function, and w represents depth consistency [16]. Nz

means number of pre-defined points in BEV grid, Nc means number of corresponding
points in image and Nd is the number of image frustum points pooling into the grid.

Method Strategy VT Formulation of F(x,y)

BEVDet [7] 2D→3D
∑Nd

k=1Dk · Ik
SA-BEV [10] 2D→3D

∑Nd
k=1Dk ·Mk · Ik

Prob-LSS(ours) 2D→3D P (x, y) ·
∑Nd

k=1Dk ·Mk · Ik
Simple-BEV [3] 3D→2D Conv(Concat(G2d((u, v), I)))
BEVFormer [15] 3D→2D

∑Nz
i=1

∑Nc
j=1Fda(Q(x, y), pij , I)

DA-BEVFormer [16] 3D→2D
∑Nz

i=1

∑Nc
j=1Fda(Q(x, y), pij , I) · w(Dij)

HeightTrans(ours) 3D→2D P (x, y) ·
∑Nz

i=1

∑Nc
j=1Dij · Mij · Iij

FB-BEV [16] 3D&2D
∑Nd

k=1 Dk · Ik+B ·
∑Nz

i=1

∑Nc
j=1 Fda(Q, pij , I) · w(Dij)

DualBEV(ours) 3D&2D P (x, y) · f(D ·M · I)

feature fusion module termed Dual Feature Fusion (DFF) module. This module
enhances the integration of dual BEV features by leveraging channel attention
module, while spatial attention module further helps to refine BEV probability
prediction. DualBEV operates on the principle of "broad input, stringent out-
put", leveraging precise dual-view probabilistic correspondences to comprehend
and represent the probability distribution of the scene.

Our major contributions are summarized below:

1) We unveil the inherent similarity between 3D-to-2D and 2D-to-3D VT and
identify a unified feature transformation covering dual VT. This transfor-
mation enables accurate correspondence establishment from both BEV and
perspective view, significantly bridging the gap between the dual strategies.

2) We propose a novel CNN-based 3D-to-2D VT termed HeightTrans. Leverag-
ing probabilistic sampling and pre-computation of lookup table, HeightTrans
establishes precise 3D-2D correspondences effectively and efficiently.

3) We introduce the DFF for dual-view features fusion. This fusion strategy
captures information from both close and distant regions in one-stage, cul-
minating in the generation of comprehensive BEV features substantially.

4) Our efficient framework DualBEV achieves state-of-the-art performance with
a remarkable 55.2% mAP and 63.4% NDS on the nuScenes test set even
without Transformer, highlighting the significance of capturing precise dual-
view correspondences for view transformation.
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2 Related Work

2.1 3D-to-2D View Transformation

OFT-Net [28] pioneered the integration of sampling methods into 3D-to-2D VT
for monocular detection, populating voxel features by aggregating image features
from corresponding projection regions. Recent BEV methods extend geometric
projection with Transformer utilizing a cross-attention mechanism, broadly cat-
egorized into two streams: explicit dense BEV queries or implicit sparse object
queries. The former [15, 32, 37] constructs a pre-defined BEV space covering a
limited 3D range, with 3D-2D correspondences heavily reliant on attention mech-
anisms, incurring high computational costs. The latter [17,18,30] employs learn-
able object queries to cover all possible object proposals, a concept challenging
to apply in dense tasks like lane segmentation and 3D occupancy prediction.

Contrarily, Simple-BEV [3] projects 3D voxels into images and samples fea-
tures bilinearly, akin to OFT-Net’s approach. It bypasses deformable atten-
tion [33] weights presented in Transformer-based methods, instead employing
convolution to reduce concatenated channels in the height dimension. However,
this simplistic sampling method without weights still lags behind 2D-to-3D CNN-
based methods in latency. In this paper, we propose HeightTrans to evaluate
correspondences and sum features directly in the BEV grid through a lookup
table, improving the speed of this strategy significantly.

2.2 2D-to-3D View Transformation

A prevalent approach for 2D-to-3D VT involves lifting multi-view 2D camera fea-
tures into 3D via pixel-wise discrete depth estimation, followed by BEV feature
extraction through pillar sum-pooling in 3D space. This paradigmatic approach
was first introduced by LSS [26] and has been followed by many subsequent
works [7, 13, 14, 27]. BEVDepth [14] and BEVStereo [13] highlight the critical
role of accurate depth estimation, with explicit depth supervision enhancing
performance. However, the efficiency of the subsequent Splat stage remains a
notable challenge, addressed by innovations such as BEV Pooling [5,7,14]. BEV-
SAN [34] proposed a Slice Attention Module to focus on the different height slices
where the different categories are located. In the concurrent work, SA-BEV [10]
suggested using SA-BEVPool to ignore points that are part of the background
during BEV Pooling. Our work further extend the idea to the BEV space to
ignore invalid features due to uncertainty in depth estimation.

2.3 Fusion View Transformation

Recent methods, such as HeightFormer [32] and FB-BEV [16], attempt to fuse
both approaches. HeightFormer introduces a height predictor on the initial BEV
feature, using deformable attention for feature sampling to refine the initial
feature. HeightFormer demonstrates the fusion ability by generating second-
stage feature based on the first-stage feature and combining them. FB-BEV
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Fig. 3: Overview of DualBEV: Initially, we employ SceneNet to predict the depth
D (Projection probability) and instance mask M (Image probability) of input images.
Subsequently, the Prob-LSS stream follows the BEVPoolv2 [5] to generate LSS feature.
Concurrently, the HeightTrans stream utilizes the Prob-Sampling to project pre-defined
3D points onto the 2D space, retrieving corresponding image features. Throughout this
process, all features are accompanied by probabilities derived from the depth map and
instance mask. Finally, we fuse two streams and predict the BEV probability P by
leveraging the DFF module, resulting in the final BEV feature F .

extends this concept further by introducing FRPN [16] to the first-stage BEV
feature, selecting valid positions for Depth-Aware BEVFormer (DA-BEVFormer)
to generate the second-stage feature. FB-BEV notes the differences between two
paradigms, enabling a two-stage VT that leverages both 2D-to-3D and 3D-to-
2D strategies. Our framework, DualBEV, further unveils the inherent sameness
of dual VT, capturing information from each stream efficiently. Additionally,
our method offers a more lightweight and deployment-friendly alternative with-
out Transformer. Illustrated in Fig. 2, our approach fuses features sharing same
transformation from different views in a one-stage manner, eliminating the re-
liance on initial BEV features and benefiting from more input information.

3 Method

As illustrated in Fig. 3, the DualBEV pipeline commences with the extraction of
image feature I ∈ RN×CI×HI×WI from N cameras by the image backbone, where
HI × WI is the shape of image feature. Subsequently, a SceneNet is employed
to generate both the instance mask M ∈ RN×CM×HI×WI and depth map D ∈
RN×CD×HI×WI . The structure of SceneNet mirrors that of DepthNet [14] with
just increasing output channels. Binary Cross Entropy (BCE) loss is applied for
instance supervision same as depth supervision, following SA-BEV [10].

The HeightTrans module employs probabilistic sampling to acquire image
features. Simultaneously, the Prob-LSS stream follows the approach outlined in
BEVPoolv2 [5] by lifting image with instance segmentation via depth prediction.
The features from these two streams are then fed into the DFF module for fusion
and BEV probability prediction. Finally, the BEV probability P ∈ R1×HF×WF
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is applied to the fused feature to obtain the final BEV feature F ∈ RCF×HF×WF

for downstream tasks, where HF ×WF is the shape of the BEV feature.

3.1 HeightTrans

The fundamental principle of 3D-to-2D VT revolves around selecting 3D posi-
tions for projection into the image space and assessing these 3D-2D correspon-
dences. In methods focusing on explicit BEV feature generation, a pre-defined
BEV map facilitates the derivation of a 2D position once the height of the BEV
grid is determined. Building upon this concept, our approach begins by sampling
sets of 3D points within a pre-defined BEV map. These sampled correspondences
are then considered and filtered carefully to generate the BEV feature by sum-
ming within each BEV grid.

BEV Height While existing approaches often rely on sparse uniform sampling
in the height range of the BEV grid to initialize 3D points, it’s important to
recognize that different heights encode distinct information in the 3D space.
Inspired by BEV-SAN [34], HeightTrans introduces a multi-resolution sampling
strategy covering the entire height range [-5m, 3m], with a resolution of 0.5m
within the ROI (Region of Interest) of [-2m, 2m], and 1.0m outside this range.
This sampling strategy enhances focus on small objects that might be easily
missed with a coarser resolution. Unlike deformable attention methods where a
set of offsets is typically predicted around the projected 2D position, our method,
with its increased number of sampling points in 3D space, eliminates the need
for predicting offsets in the image space, allowing for pre-computation.

Prob-Sampling With our pre-defined set of 3D sampling points p3d ∈ R3,
the subsequent task involves acquiring features for each position and weighing
the various correspondences. Given a 3D point p3d = (x, y, z) in the 3D space,
the camera’s extrinsic matrix T and intrinsic matrix K, the projection yields a
corresponding 2D point p2d = d · (u, v, 1) in the image space, where d signifies
the depth of the point.

p2d = K · T · p3d (1)

A straightforward method to obtain the 3D features Fht is by using a bilinear
grid sampler G2d to sample the image feature I at the projected position p2d:

Fht(p3d) = G2d(I, p2d) (2)

However, the projected position may land on a background pixel, which is not
only useless but could also be misleading for detection. Instead, we utilize the
instance mask M derived from SceneNet to represent the image probability Pimg,
which we apply to the image feature to mitigate this concern.

Fht(p3d) = G2d(M · I, p2d) (3)
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To distinguish multiple 3D points hitting the same 2D position, we further use
a projection probability Pproj to evaluate these multiple correspondences. Pproj

is obtained by a trilinear grid sampler G3d on the depth map D, treating the
depth channel as the third dimension.

Fht(p3d) = G3d(D, p2d) · G2d(M · I, p2d) (4)

Finally, to address the issue of blank BEV grids that offer no useful information
for detection, we introduce a BEV probability Pbev to represent the occupied
probability of the BEV grid, where (x, y) is the location in BEV space.

Fht(p3d) = P (x, y) · G3d(D, p2d) · G2d(M · I, p2d) (5)

Acceleration BEVPoolv2 [5] utilizes pre-computation for the calculation of 3D
points index in BEV space from the defined frustum, where both image feature
index and depth map index remain fixed during inference. Similarly, we can
accelerate our VT by building a lookup table after replacing the grid sampler
with the round function. The BEV feature in Eq. (5) can be simplified as:

Fht(x, y, z) = P (x, y) ·D(u, v, d) ·M(u, v) · I(u, v) (6)

Now we can sum the features of Nz pre-defined points in each BEV grid for
Nc corresponding 2D positions to obtain the final HeightTrans feature as:

Fht(x, y) = P (x, y) ·
Nz∑
i=1

Nc∑
j=1

D(uij , vij , dij) ·M(uij , vij) · I(uij , vij) (7)

As shown in Tab. 1, this representation bears similarity to BEV Pooling. There-
fore, we can establish the lookup table by projecting pre-defined 3D points into
the image space and subsequently calculating the index in the feature map and
depth map. Unlike BEV Pooling, the index in BEV map is constant in our
method. Then we can use the same CUDA operator as in BEVPoolv2 [5] with
the lookup table to speed up the calculation of BEV features during inference.

3.2 Prob-LSS

The traditional LSS pipeline begins by predicting the depth probability of each
pixel to facilitate its elevation into frustum points, which is then projected into
the BEV space through BEV Pooling. SA-BEV [10] introduced Semantic-Aware
BEV Pooling to circumvent the need for lifting irrelevant pixels in image space.
However, the inherent uncertainty in depth estimation may still result in extra-
neous information being present in the BEV space.

To address this issue, we further integrate BEV probability into the LSS
pipeline, referred to as Prob-LSS. The construction of LSS features at location
(x, y) is similar to Eq. (7) and can be expressed as follows:

Flss(x, y) = P (x, y) ·
Nd∑
k=1

D(uk, vk, dk) ·M(uk, vk) · I(uk, vk) (8)
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(a) Prob-LSS Feature (b) HeightTrans Feature (c) Fused Feature

Fig. 4: BEV Feature Visualization with GT boxes. Prob-LSS pays more atten-
tion to close range while HeightTrans can also capture distant information. In the red
rectangle (distant range), where our unified framework compensates weak detection
on barriers of Prob-LSS with HeightTrans. In the orange rectangle (close range), BEV
features are enhanced from dual streams. Ego locates in the center of BEV features.

where Nd represents the number of projected frustum points in the BEV grid at
location (x, y). It’s noteworthy that for each BEV grid, HeightTrans provides a
constant number with Nz×Nc transformed image features, whereas LSS offers a
dynamic number with Nd features depending on the lifted frustum. This dynamic
nature of LSS acts as a complementary aspect to the HeightTrans.

3.3 Dual Feature Fusion

Unifying Eqs. (7) and (8), we observe that BEV probability can be obtained after
the fusion of dual features. Inspired by the CBAM [31] and AFF [2] framework,
we propose a Dual Feature Fusion (DFF) module to integrate these features and
predict the BEV probability effectively. The DFF module comprises a fusion
module f , which utilizes channel attention to predict weights for dual feature
summation, and a Spatial Attention Enhanced ProbNet (SAE-ProbNet) to pre-
dict the BEV probability P , formulated as:

F (x, y) = P (x, y) · f(Flss(x, y), Fht(x, y)) (9)

Fusion Module As shown in Fig. 4, Flss focuses more on close objects occupy-
ing most of the image pixels, while Fht tends to contain information of distant
objects. This observation suggests two-stage methods [16, 32] initialized by LSS
features, may not guide second-stage VT to extract features at distant regions.

To tackle these challenges and obtain a robust BEV representation, our fu-
sion module f concatenates the dual features and passes them into a channel-
attention-based fusion (CAF) module to predict the affinity for feature selection.
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Fig. 5: Dual Feature Fusion Module: Dual features are first concatenated and then
passed into the CAF module for fusion. Subsequently, the SAE-ProbNet is utilized to
obtain the BEV probability for the final BEV feature.

The fusion feature Fchannel is obtained using the following equation:

Fchannel = f(Flss, Fht) (10)
= C(Flss ⊖ Fht) · Flss + (1− C(Flss ⊖ Fht)) · Fht (11)

where ⊖ denotes concatenation, and C denotes the CAF module, which is mod-
ified from the MS-CAM [2] as illustrated in Fig. 5. This fusion phase aims to
select features from two streams softly with a learning weight, enhancing the
representation in both close and distant regions.

BEV Probability Prediction We utilize the BEV probability P predicted by
the SAE-ProbNet to aggregate Fchannel, thereby mitigating the impact of blank
BEV grids. We employ ProbNet to extract local information, serving as the local
stream Pl. Further enhancement of the prediction is achieved by incorporating
a spatial attention module to capture global information, serving as the global
stream Pg. The entire module can be formulated as:

Fspatial = P · Fchannel (12)
= σ(Pl(Fchannel) + Pg(Fchannel)) · Fchannel (13)

As depicted in Fig. 5, the local stream, ProbNet, employs a 3×3 convolution
kernel to reduce the channel dimensions. Subsequently, it undergoes processing
through a ResBlock-CBAM [31] and a 1×1 convolution operation to acquire
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Table 2: Comparison on the nuScenes val set. ResNet-50 is used as image backbone
and resolution is set to 704×256. †: We apply BEVDepth [14] with BEVPoolv2 [5]
as baseline method. ⋆: For fair comparison with LSS method, we disable SceneNet
and instance supervision in single-frame. ‡: Features’ operation is performed at 1/16
resolution without BEV-Paste [10] for fair comparison.

Method Frames mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDet [7] 1 29.8 37.9 0.725 0.279 0.589 0.860 0.245
BEVDepth [14] 1 33.7 41.4 0.646 0.271 0.574 0.838 0.220
BEVDepth [5] † 1 34.2 40.7 0.645 0.273 0.599 0.890 0.240
DualBEV⋆ 1 35.2 42.5 0.640 0.271 0.542 0.838 0.216
BEVDet4D [6] 2 32.2 45.7 0.511 0.241 0.386 0.301 0.121
BEVFormer [15] 2 33.0 45.9 0.686 0.272 0.482 0.417 0.201
BEVDepth [14] 2 35.1 47.5 0.639 0.267 0.479 0.428 0.198
BEVDepth† [5] 2 36.8 48.5 0.609 0.273 0.507 0.406 0.196
BEVStereo [13] 2 37.2 50.0 0.598 0.270 0.438 0.367 0.190
FB-BEV [16] 2 37.8 49.8 0.620 0.273 0.444 0.374 0.200
SA-BEV‡ [10] 2 37.8 49.9 0.617 0.270 0.441 0.370 0.206
DualBEV 2 38.0 50.4 0.612 0.259 0.403 0.370 0.207

local attention. Supervised by a BEV mask, ProbNet utilizes BCE loss and Dice
loss [24], with BEV Centerness [35] also incorporated into the loss to encourage
the network to focus more on distant objects. On the other hand, the global
stream utilizes a 7×7 convolution kernel to compute the average and maximum
values of the input feature, thus enlarging the perception field in BEV space.
These streams are then combined before passing through the sigmoid function
σ. This design aims to equip our module with the capability to capture both
local and global attention for enhanced BEV probability prediction.

4 Experiments

4.1 Datasets and Metrics

We conduct our experiments on the nuScenes dataset [1], a widely used bench-
mark for autonomous driving research. nuScenes offers comprehensive sensor
data captured in urban driving scenarios, facilitating robust evaluation of ob-
ject detection algorithms. NuScenes Detection Score (NDS) [1] serves as the
official metric to measure the quality of 3D detection. NDS integrates mean Av-
erage Precision (mAP), mean Average Translation Error (mATE), mean Average
Scale Error (mASE), mean Average Orientation Error (mAOE), mean Average
Velocity Error (mAVE) and mean Average Attribute Error (mAAE), providing
a holistic measure of detection quality across various aspects of performance.

4.2 Implementation Details

We employ ResNet-50 [4] operating at an image resolution of 704×256. During
the 20-epoch training phase with the CBGS [39] and a batch size of 64, we
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Table 3: Comparison with previous state-of-the-art BEV detectors on the nuScenes
test set. Swin-B [21] and ConvNeXt-B [22] don’t use extra data for depth training.

Method Backbone mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

DETR3D [30] V2-99 41.2 47.9 0.641 0.255 0.394 0.845 0.133
BEVDet4D [6] Swin-B 45.1 56.9 0.511 0.241 0.386 0.301 0.121
UVTR [12] V2-99 47.2 55.1 0.577 0.253 0.391 0.508 0.123
BEVFormer [15] V2-99 48.1 56.9 0.582 0.256 0.375 0.378 0.126
BEVDepth [14] V2-99 50.3 60.0 0.445 0.245 0.378 0.320 0.126
PETRv2 [20] V2-99 50.8 59.1 0.543 0.241 0.360 0.367 0.118
Sparse4D [17] V2-99 51.1 59.5 0.533 0.263 0.369 0.317 0.124
BEVStereo [13] V2-99 52.5 61.0 0.431 0.246 0.358 0.357 0.138
SA-BEV [10] V2-99 53.3 62.4 0.430 0.241 0.338 0.282 0.139
FB-BEV [16] V2-99 53.7 62.4 0.439 0.250 0.358 0.270 0.128
SOLOFusion [25] ConvNeXt-B 54.0 61.9 0.453 0.257 0.376 0.276 0.148
SparseBEV [18] V2-99 54.3 62.7 0.502 0.244 0.324 0.251 0.126
DualBEV V2-99 55.2 63.4 0.414 0.245 0.377 0.252 0.129

utilize the AdamW [23] optimizer with a learning rate set to 2×10−4. Data
augmentation techniques consistent with those of BEVDet [7] are applied. Our
BEV grid size is set to 128×128 without building voxel features. For the test set,
we leverage VoVNet [11] at an image resolution of 1600×640, with the BEV grid
size adjusted to 256×256. The model is trained for only 8 epochs with CBGS, and
8 previous keyframes are applied for temporal module following BEVDet4D [6].
All latency tests are conducted on a single NVIDIA 3090 GPU.

4.3 Main Results

nuScenes val set We adopt BEVDepth [14] with BEVPoolv2 [5] as baseline
method. As illustrated in Tab. 2, DualBEV outperforms the baseline method
with +1.0% mAP and +1.8% NDS in single frame. For multi-frame, DualBEV
not only surpasses the baseline with +1.2% mAP and +1.9% NDS, but also
outperforms BEVStereo [13] which uses temporal-stereo module for precise depth
estimation. By leveraging HT features which capture the distant information,
and efficient fusion with LSS feature, we also have a 0.5% NDS increase compared
to SA-BEV [10] and a 0.6% NDS increase compared to FB-BEV [16].

nuScenes test set Tab. 3 demonstrates that DualBEV achieves state-of-the-art
performance, yielding a remarkable 55.2% mAP and 63.4% NDS compared to
prior works in VT. Notably, our approach exhibits a significant margin of 1.9%
in mAP over SA-BEV [10] and 1.5% over FB-BEV [16], while also surpassing
them by 1.0% in NDS. Additionally, when compared to SOLOFusion [25], which
focus on temporal module, DualBEV maintains superiority with a lead of 1.2%
in mAP and 1.5% in NDS even without temporal-stereo module. Furthermore,
DualBEV outperforms the previous state-of-the-art Transformer-based VT ap-
proach SparseBEV [18], by a notable margin of 0.9% in mAP and 0.7% in NDS,
proving the pivatol role of unveiling precise correspondences in VT.
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Table 4: Ablation study of different components on the nuScenes val set.

Method mAP↑ NDS↑ latency↓

Baseline [14] 34.2 40.7 10.2ms
+ProbNet 34.6 41.1 11.1ms
+HeightTrans 35.0 41.5 11.3ms
+CAF 35.3 41.6 11.5ms
+SAE 35.2 42.5 11.7ms

(a) Component Ablation.

Pproj Pimg Pbev mAP↑ NDS↑

✓ 37.0 48.8
✓ ✓ 37.7 49.9
✓ ✓ 37.4 49.6

✓ ✓ 27.0 40.0
✓ ✓ ✓ 38.0 50.4

(b) Probability Ablation.

VT Operation mAP↑ NDS↑ latency↓

SCAda [16] 29.5 36.6 12.50ms
Bilinear-Sampling [3] 30.5 37.6 7.15ms
BEV Pooling [5] 30.7 38.2 0.32ms
Prob-Sampling 30.6 39.0 0.32ms

(c) VT Operation Comparison.

Distribution Num mAP↑ NDS↑

Uniform 4 35.0 41.9
Uniform 8 35.3 42.2
Uniform 16 35.3 42.3

MR 13 35.2 42.5

(d) Sampling Strategy in Height.

Method Pproj Pimg Pbev mAP↑ NDS↑

BEVDet [7] ✓ 30.7 38.2
SA-BEV [10] ✓ ✓ 30.9 38.7
Prob-LSS ✓ ✓ ✓ 31.5 39.1

(e) Prob-LSS Ablation.

Strategy Process mAP↑ NDS↑

Refine two-stage 35.1 41.7
Add one-stage 35.2 42.1
DFF one-stage 35.2 42.5

(f) Fusion Strategy.

4.4 Ablation Study

Impact of Each Component We first explore each component’s impact in
Tab. 4(a). Starting with BEVDepth [14] as the baseline, the initial integration of
ProbNet to provide BEV probability results in a 0.4% increase in both mAP and
NDS. Combining HT features led to a 0.4% mAP and 0.4% NDS increase, show-
casing compensation for Prob-LSS. Subsequently, we employ the CAF module
to softly select features from the two streams, resulting in a further 0.3% mAP
and 0.1% NDS increase. Finally, by incorporating the SAE module for improved
BEV probability prediction with the addition of spatial attention module along-
side ProbNet, our method achieves a substantial 0.9% improvement in NDS. The
overall components gain a 1.0% mAP and 1.8% NDS improvement. Addition-
ally, we also test the latency of VT from image feature to BEV feature including
depth estimation. The entire proposed components reveal an extra latency of
merely 1.5ms, with ProbNet introducing 0.9ms of this total.

Impact of Each Probability Tab. 4(b) demonstrates the impact of each prob-
abilistic measurement for DualBEV. Alongside the projection probability Pproj ,
the inclusion of image probability Pimg yields a notable improvement of 0.7%
mAP and 1.1% NDS, while the introduction of BEV probability Pbev contributes



DualBEV 13

to a 0.4% mAP and 0.8% NDS enhancement. This observation implies that fea-
tures of background pixels in the image space have a comparable detrimental
effect to features of blank grids in the BEV space. An even more significant
performance boost of 1.0% mAP and 1.6% NDS is achieved when both proba-
bilities are applied simultaneously. However, disabling Pproj by adopting a uni-
form distribution for depth prediction per pixel leads to a significant decrease
in performance, indicating the critical importance of Pproj , which serves as the
cornerstone of the LSS pipeline.

Effect of Prob-Sampling In Tab. 4(c), we compare Prob-Sampling with other
methods using BEVDet [7] as the base detector, focusing solely on VT op-
eration. Regarding accuracy, Prob-Sampling outperforms 1-layer depth-aware
spatial cross-attention (SCAda) proposed by FB-BEV [16] by 2.4% in NDS,
while achieving a 1.4% NDS enhancement compared to bilinear sampling used
in Simple-BEV [3]. Additionally, Prob-Sampling shows a 0.8% NDS improvement
over BEV Pooling [5]. In terms of inference latency, Prob-Sampling’s adoption of
pre-computation for acceleration allows it to achieve comparable speed to BEV
Pooling, representing a remarkable more than 20 times speed improvement over
bilinear sampling and 40 times improvement over SCAda. This highlights Prob-
Sampling’s competitiveness in both accuracy and latency for BEV detection.

Effect of Sampling Strategy in Height In HeightTrans, we apply a multi-
resolution (MR) sampling strategy within the height range. We evaluate different
sampling strategies as shown in Tab. 4(d). The performance almost reaches sat-
uration after 8 uniform points. Notably, our proposed approach achieves a 0.6%
increase in NDS compared to 4 uniform points utilized in BEVFormer [15], and
even a 0.2% enhancement compared to 16 uniform points along the height.

Effect of Prob-LSS Our proposed Prob-LSS extends the representation of
LSS approach as illustrated in Tab. 1. We further examine the evolution of LSS
methods starting from BEVDet [7] without any auxiliary loss in Tab. 4(e). SA-
BEV [10] expands upon the base version by introducing instance segmentation
to filter out irrelevant information in the image space. This addition results
in a 0.2% increase in mAP and a 0.5% increase in NDS. Our method further
extends the idea to BEV space to mitigate the impact of irrelevant BEV features,
particularly those generated by inaccurate depth estimation. This extension leads
to a notable improvement of 0.6% in mAP and 0.4% in NDS.

Effect of Fusion Strategy Tab. 4(f) compares different fusion strategy for HT
feature and Prob-LSS feature. We first explore the refinement strategy employed
in FB-BEV [16], which utilizes Prob-LSS features to predict the BEV probability
for HeightTrans. However, the refinement strategy yields even worse results than
directly summing the both features for BEV probability prediction, with a 0.4%
NDS decrease. Our proposed DFF strategy achieves a notable improvement,
surpassing the refinement strategy by 0.8% in NDS.
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Fig. 6: Visualization of detection results on image and BEV space.

4.5 Visualization

In Fig. 6, we present a qualitative comparison between BEVDepth [14] and Dual-
BEV. Our approach exhibits superior performance in close and medium ranges,
effectively eliminating false detections and accurately captures the curve of bar-
riers even break (blue dashed rectangles). In the distant range, our method also
recalls missed objects (orange dashed rectangles), benefiting from the compen-
sation of HeightTrans. Additionally, our method provides precise information
about small objects (purple dashed circles), which is not evident from BEV.

5 Conclusion and Limitation

In this work, we present a novel approach to unify feature transformation suitable
for both 3D-to-2D and 2D-to-3D VT, coupled with pre-computation for speed en-
hancement. Leveraging CNN-based probabilistic correspondences, HeightTrans
and Prob-LSS extend the capabilities of respective VT methods effectively.
Through one-stage fusion of dual features using DFF, DualBEV captures the
essence of VT and demonstrates the effectiveness of unveiling precise correspon-
dences for BEV representation. Furthermore, our approach is versatile and ap-
plicable to tasks such as BEV segmentation or 3D occupancy prediction.

However, our framework’s current design exclusively derives all probabilities
from the current frame, neglecting historical information and underutilizing the
temporal module. Furthermore, our framework heavily depends on depth estima-
tion, as demonstrated by a significant performance drop observed after switching
to a uniform distribution, as shown in Tab. 4(c).
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