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Fig. 1: Our model creates distinct frames based on the provided source image and
caption, adjusting according to different levels of motion magnitude (optical flow mag-
nitude) specified in the input conditions. It stands well for both high spatial quality
and temporal consistency.

Abstract. We present Pix2Gif, a motion-guided diffusion model for
image-to-GIF (video) generation. We tackle this problem differently by
formulating the task as an image translation problem steered by text
and motion magnitude prompts, as shown in Fig. 1. To ensure that the
model adheres to motion guidance, we propose a new motion-guided
warping module to spatially transform the features of the source image
conditioned on the two types of prompts. Furthermore, we introduce
a perceptual loss to ensure the transformed feature map remains within
the same space as the target image, ensuring content consistency and co-
herence. In preparation for the model training, we meticulously curated
data by extracting coherent image frames from the TGIF video-caption
dataset, which provides rich information about the temporal changes of
subjects. After pretraining, we apply our model in a zero-shot manner
to a number of video datasets. Extensive qualitative and quantitative
experiments demonstrate the effectiveness of our model – it not only
captures the semantic prompt from text but also the spatial ones from
motion guidance. We train all our models using a single node of 16×V100
GPUs.
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1 Introduction

Visual content generation has been significantly advanced by the huge progress
of diffusion models [21, 22, 35, 51]. Recently, the development of latent diffusion
models (LDMs) [45] has led us to a new quality level of generated images. It
has inspired a lot of works for customized and controllable image generation [32,
46,65,69], and fine-grained image editing [6, 20,28,36].

In this work, we focus on converting a single image to an animated Graph-
ics Interchange Format (GIF), which is valuable for design yet under-explored.
Despite the absence of image-to-GIF generation models, diffusion-based video
generation has emerged as a hot topic recently. Compared with text-to-image
generation, however, text-to-video generation requires not only high quality for
individual frames but also visual consistency and temporal coherence across
frames. To achieve this goal, existing works expand the LDMs to video diffusion
models (VDMs) by either inflating the 2D CNNs in LDMs to 3D ones [23] or
introducing an additional temporal attention layer to bridge the diffusion for
each frame [5,15,19,50,59]. In addition to text prompts, a few recent works also
explored the way of using images or other prompts to make the video generation
model more customizable and controllable [11,38]. However, due to the high cost
of VDMs to generate a sequence of video frames in one run, most (if not all) of
these works require a compromise of reducing the resolution of generated frames
(64× 64 typically), and the usage of extra super-resolution diffusion models for
upscaling [31,47]. Moreover, since these methods use the temporal attention lay-
ers to model the cross-frame dependency implicitly, it is quite hard for them
to preserve good controllability of the frame-to-frame temporal dynamics in a
fine-grained manner.

Given that animated GIF usually contains less number of frames and requires
more specializations, we take a different strategy and formulate the image-to-GIF
generation as an image translation process. To decouple the generation of visual
contents and temporal dynamics, we further introduce a motion flow magnitude
as extra guidance in addition to image and text prompts. Unlike the aforemen-
tioned works, our model takes one or more history frames as the condition and
produces only one future frame at once. This brings some unique advantages: (i)
simplicity - our model can be purely built on top of LDMs and trained end-to-end
with high resolution, without any cascaded diffusion processes for upscaling. (ii)
controllability - we could inject detailed and different text and motion prompts
at each time step for generating a frame, which gains much better controllability
of the model. Our work is inspired by a line of canonical works for future frame
prediction [40, 48, 56]. However, due to the lack of a powerful image-generation
engine, these works fail to produce high-quality results and can only be ap-
plied to specific video domains [16,30,52]. Moreover, they cannot support other
types of prompts or conditions than the history frames. To address this problem,
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we exploit a modern diffusion-based pipeline. More specifically, we follow text-
conditioned image editing approaches (e.g., InstructPix2Pix [6]), and propose
a new temporal image editing to produce future frames given history frames.
To train the model, we curate a new training dataset based on TGIF [33] by
extracting frames and calculating the magnitude of optical flow between them.
We then selected an appropriate range of the optical flow magnitude and sam-
pled frame pairs from each GIF in a manner that ensures diversity. In the end,
we train our diffusion model called Pix2Gif, which can generate high-quality
animated GIF consisting of multiple frames, given a single image and text and
motion magnitude prompts. In summary, our main contributions are:

– We are the first to explore an image-to-image translation formula for gener-
ating animated GIFs from an image, guided by a text prompt and motion
magnitude.

– We propose a flow-based warping module with a perceptual loss in the diffu-
sion process that takes motion magnitude as input and controls the temporal
dynamics and consistency between future frames and the initial ones.

– We curate a new dataset, comprised of 78,692 short GIF clips for training,
and 10,546 for evaluation. The new dataset covers a variety of visual domains.

– Quantitative and qualitative results demonstrate the effectiveness of our pro-
posed method for generating visually consistent coherent GIFs from a single
image, and it can be generalized to a wide range of visual domains.

2 Prior Work

Image and video generation has been a long-standing problem in the community.
It can be tackled by different approaches, which can be categorized into four
groups: generative adversarial networks (GANs) [17,26,27,44], transformer-based
autoregressive decoding [10,12,41,42,60,66], masked image modeling [7,8,55,67].
Most of the recent works exploited diffusion models for image generation given
their high-quality outputs and huge open-source supports [45, 47]. Recently, a
number of works have extended the text-to-image generation model into image
translation or editing models [6, 20, 28, 36, 69] or video generation models [5, 15,
23,50,57]. Below we provide a brief overview of the related diffusion-based image
and video generation methods.

Image-to-Image Translation. Diffusion-based image-to-image generation has
drawn increasing attention. Different from text-to-image generation, it takes an
image as input and edits its contents following the text instructions while keep-
ing the irrelated parts unchanged. SDEdit [36] and ILVR [9] are two pioneering
works that impose reference image conditions to an existing latent diffusion
model for controllable image generation. Later on, to conduct local edits, the
authors in [2] proposed blended latent diffusion to steer the diffusion process
with a user-specified mask, where the pixels out of the mask remain the same
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as the input image while the region inside is edited following the textual de-
scription. Instead of manipulating the image space, Prompt2Prompt [20] pro-
posed to edit the image by manipulating the textual context (e.g., swapping
or adding words.) to which the latent diffusion model cross-attends. However,
this method requires forwarding a text-to-image generation process to obtain
the cross-attention maps, and thus cannot be applied to real images. Imagic [28]
proposed to blend the embeddings of a real image with the textual context em-
bedding so that the generated image obeys both the image and text conditions.

All the aforementioned works leverage a frozen latent diffusion model and
control the generation with modified text or image prompts. To enable arbi-
trary image editing, InstructPix2Pix [6] proposed to finetune the LDM to fol-
low user instructions that precisely convey the user intents, e.g., “change the
cat to dog”. The model is trained by a synthetic dataset consisting of triplets
⟨imagesrc, instruction, imagetgt⟩. The resulting model could allow both realistic
and generated images and support arbitrary language instructions. Some other
works also exploit a similar way to train the model to follow instructions [18,68].
To further enhance the language understanding, MGIE [13] exploited a large
multimodal model to produce a more comprehensive textual context for the
instructed image editing.

In this work, we employ the image-to-image translation pipeline and are
the first to formulate a GIF generation as an image translation problem. Given
a reference image, the goal is to generate a realistic future frame following a
textual instruction. Therefore, the focus is on how to perform temporal rather
than spatial editing on a source image. When the process rolls out, it gradually
gives a sequence of frames.

Conditioned Video Generation. Speaking of the high-level goal, our work
resembles conditioned video generation. For video generation, a conventional
way is inflating the 2D U-Net used in LDM to 3D U-Net [71] by replacing
the 2D convolution layers with 3D ones. Likewise, a similar strategy is taken
in [5,15,19,50,59], but with a slight difference in that they use interleaved spatial
and temporal attention layers in the U-Net. Due to the high cost of generating a
sequence of video frames in one shot, the output videos usually have a resolution
as low as 64 × 64. To attain high-resolution videos, these methods need to use
one or more super-resolution diffusion models [31, 47] to upscale the resolution
by 4 or 8 times. To accelerate the training, a pre-trained text-to-image LDM is
usually used to initialize these models. Adding spatial-temporal modules is also
a commonly used strategy for autoregressive models [24, 55, 61, 62]. Similarly,
both [62] and [24] exploit a pretrained autoregressive image generation model as
the starting point. In [55], however, the authors introduce and pretrained a new
video encoder, which is then used to train a masked video decoder.

Besides text-to-video generation, using images as the condition for video gen-
eration draws increasing attention. On one hand, once a text-to-video generation
is trained, it can be further finetuned for image-to-video generation [4]. In [11],
the authors introduce additional structural conditions (e.g., depth maps) for
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more controllable video generation. Alternatively in [38], a latent flow diffusion
model is introduced for image-conditioned video generation by explicitly gener-
ating a sequence of optimal flows and masks as the guidance. On the other hand,
a few concurrent works to ours directly approach image-to-video generation on
top of video diffusion models [58,63,70]. All these works share a similar spirit to
text-to-video generation models but add additional images as the reference.

Our method uses a diffusion model but differs from all the aforementioned
methods in that we reformulate video generation as a frame-to-frame translation
problem based on the history frames. As [6] suggests image-to-image translation
can maintain a decent visual consistency. In addition, we also introduce a motion
flow magnitude as another condition to explicitly control the temporal dynamics.

Future Frame Prediction. Future frame prediction or forecasting [40, 48, 56]
has been a long-standing problem before the prevalence of diffusion models. It
has been used as an anomaly detection approach by comparing the observed
frame and the predicted ones [3, 34] and video representation learning for var-
ious downstream tasks [14]. For these problems, a recurrent network such as
LSTM [53], ConvLSTM [39, 56] or 3D-CNN [1] is usually used as the model
architecture, and GAN [17] or Variational Autoencoder (VAE) [29] is used as
the learning objectives. With the emergence of VQ-VAE [43], the authors in [25]
exploited axial transformer blocks to chain the encoder-decoder for autoregres-
sive next-frame prediction. In [57], the authors proposed masked conditional
video diffusion to unify different tasks of video prediction, generation and inter-
polation. Nevertheless, all of these models are trained on domain-specific video
datasets such as MovingMNIST [30], CATER [16] and UCF-101 [52], etc, far
from being a generic video generation model.

Our work takes inspiration from future frame prediction methods but pro-
poses a simpler yet effective strategy by formulating it as an image-to-image
translation problem. Furthermore, our model simultaneously takes image, text
and motion magnitude as the guidance for better controllability. To attain a
model as general as possible, we curate a new training dataset covering a wide
range of domains. Without any further dataset-specific finetuning, our model
achieves plausible video generation results as shown in Fig. 1.

3 Method

Our goal is to generate GIFs, given an initial frame, a motion description, and a
measure of optical flow. We frame this as an image-to-image translation problem
based on latent diffusion. We first explain how we created our training dataset
in Sec. 3.1, then outline our model’s principles and training strategy in Sec. 3.2.
Next, we delve into the specifics of our proposed model, explaining its various
components in Sec. 3.3. Finally, we focus on the loss functions used to train our
model in Sec. 3.4.



6 H. Kandala et al.

…

Optical Flow Optical Flow

GIF Frames

Optical Flow Range: [0, 200] Optical Flow Range: [2, 20]

 Maintain pair diversity

Per Gif: min(# pairs,10)

Optical Flow Range: [2, 20]

Fig. 2: The three step process of curating the TGIF dataset. Starting from extracting
frames A to restricting the range of optical flow B and then maintaining the diversity
of pairs C.
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Fig. 3: Pix2Gif model pipeline. We propose an end-to-end network where the inputs
are encoded by E , CLIP and M to output E(cL),cT and cM respectively, which then
goes into W to form the conditioning input for LDM .

3.1 Dataset

We used the Tumblr GIF (TGIF) dataset [33], which predominantly consists
of human-centric animated GIFs described by captions. The dataset features a
range of GIFs with varied movements over 1-3 seconds.

The curation process, as shown in Fig. 2, involved extracting frames from
all GIFs and calculating the optical flow between all possible frame pairs. The
number of extracted frames from each GIF varied, with an average of about 41
frames. The optical flow histogram calculated between all frames ranged from
[0, 200]. We selected the [2, 20] range, capturing small yet significant motion
and excluding pairs with drastic changes. Despite the restricted range, we still
had a significant number of training pairs. To avoid model overfitting and main-
tain diversity, we randomly selected a minimum of 10 pairs or the number of
pairs within the restricted range from each GIF. This approach resulted in a
final dataset with nearly equal representation of all values within the selected
range. The final dataset contained 783,184 training pairs and 105,041 validation
pairs. Each data point consisted of a pair of frames from the same GIF, the
corresponding caption, and the calculated optical flow between the frames.
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3.2 Preliminary: Instructed Image Editing

Our model is fundamentally grounded in the latent diffusion models (LDMs) for
image generation and editing [6, 45]. More specifically, we build upon Instruct-
Pix2Pix [6] by framing our objective in the context of an instructed image-to-
image translation task. Given an image x, the forward diffusion procedure intro-
duces noise to the encoded latent z, thereby producing a noisy latent vector zt.
This process is carried out over T timesteps, with each timestep t ∈ {1, ..., T}
seeing an increment in the noise level until it culminates into a random noise
n. A network eθ is trained by minimizing the following latent diffusion objec-
tive to predict noise existing in the noisy latent zt, considering factors image
conditioning cI and textual instruction cT :

LLDM = EE(x),E(cI),cT ,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, E(cI), cT )||22

]
(1)

where E is the VQ-VAE encoder that transforms the images from pixel space
to discrete latent space. To facilitate image conditioning, zt and E(cI) are con-
catenated and then fed into a convolutional layer. The model is trained for
conditional and unconditional denoising, given the image and caption condition
individually or collectively.

3.3 Our Model: Pix2Gif

We build our model similar to InstructPix2Pix and frame our objective in the
context of a text-instructed and motion-guided temporal editing problem. Com-
pared with the original InstructPix2Pix pipeline, the main innovation is the
newly introduced motion-based warping module. The overall model pipeline is
shown in Fig. 3.

Our model takes three inputs: an image, a text instruction, and a motion
magnitude. These inputs are fed into the model through two pathways - once
through the diffusion model directly, and again through the warping module,
which will be discussed in Sec. 3.3 and Sec. 3.3. When passed through the cap-
tion, we add the phrase “The optical flow is _.” to the original caption. The flow
input is then appended at the end in a word format rather than a numerical one,
as the CLIP model tends to assign higher similarity scores to word forms than
to numerical representations of numbers for the same image. Finally, our model
is trained by minimizing the following loss function:

L′
LDM = EE(x),E(cI),cT ,cM ,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, E(cI), cT , cM )||22

]
(2)

where cM is the motion condition. The altered caption is processed via the pre-
trained CLIP model to yield cT , while the output of M gives us cM . These two
conditions are then added linearly, serving as the conditioning input for both
the Warping Module W (discussed in Sec. 3.3) and the Latent Diffusion Model
LDM (referenced in Sec. 3.2).
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Fig. 4: Deep dive into the Warping Module W. It comprises of three units: IM , FNet

and WNet.

Motion Embedding Layer In traditional conditional diffusion models like
[6], text prompts are often enough for image generation. We initially passed the
motion input indirectly through the prompt. However, this divided the model’s
attention on a single caption token, which is problematic when the main caption
stays the same but the motion input changes. To let the model focus on the
motion input, we included an embedding layer that converts the motion input
into an integer and selects an embedding vector. This vector is then duplicated
and concatenated with itself to generate cM , which when combined with the
caption embedding cT , provides the conditioning input cL = cT + cM for both
warping module W and LDM .

Warping Module One of the main components of Pix2Gif is the Warping
Module W. As illustrated in Fig. 4, it technically comprises two networks: the
FlowNet (FNet) and the WarpNet (WNet). Ordinarily, the computation of optical
flow involves two images. However, in this case, we initially have only one image -
the source image - and that too in the latent domain. Thus, our goal is to learn the
optical flow utilizing just one latent image. This is achieved via FNet, conditioned
on cL, which guides it to generate a flow feature map in the intended direction
with the hint of text and motion prompts. This condition is processed by the
Injection Module (IM), a compact encoder designed to make cL compatible
for concatenation with one of the intermediate feature maps near the end of
the network. This configuration enables FNet to independently learn high-level
features, which are then guided in the desired direction with the introduction of
cL. The architecture of FNet resembles that of UNet, producing an output with a
fixed channel of 2 to capture changes in the horizontal and vertical components.
This optical flow feature map F = FNet(E(cI), IM(cL)), along with the source
latent (E(cI)), is then processed through WNet to yield a Fischer map zW =
WNet(E(cI), F ). This transformation is learned more efficiently and abstractly
in the latent space than in the pixel space.
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Table 1: Quantitative comparison with state-of-the-art image-text-to-video generation
models for the zero-shot setting.

Method UCF-101 [52] MSR-VTT [64]

FVD ↓ CLIPSim ↑ PIC ↑ FVD ↓ CLIPSim ↑ PIC ↑

I2VGen-XL [70] 563.12 0.2865 0.6329 278.62 0.2272 0.6018
DynamiCrafter [63] 527.06 0.2796 0.6307 271.63 0.2602 0.6135
Pix2Gif (Ours) 285.02 0.2815 0.8763 168.69 0.2573 0.8521

3.4 Losses

Our model incorporates two different types of losses. The first type is the stan-
dard L2 loss Eq. (2), which is utilized by the stable diffusion model and talked
about in Sec. 3.2

The second loss type in our model is the perceptual loss, which is calculated
by comparing the latent features of the image condition E(cI) and the warped
image zW . This is implemented using a pre-trained VGG network [49], modified
to accommodate 4 channels instead of the standard 3. The modification involves
averaging the weights from the first three channels to initialize the fourth. The
perceptual loss, Lp, is defined as:

Lp(E(cI), zW ) =
∑
k

λk||ϕk(E(cI))− ϕk(zW )||2 (3)

Here, ϕk(.) be the feature map of the k-th layer of the VGG network, ||.|| denotes
the Frobenius norm, and λk is a weighting factor. This loss ensures that the
warped image maintains high-level features like edges, textures, and object types,
making the images more perceptually and semantically similar and preserving
the overall structure of the source image.

In conclusion, the total loss function, denoted as LT , for our objective is
computed by a weighted sum of the two individual losses.

LT = L′
LDM + λPLP (4)

Here, λP is the weighting factor for perceptual loss. These two losses together
provide a holistic framework to train our model by ensuring pixel-level accuracy,
preservation of high-level features, and smooth motion transitions.

4 Experiments

4.1 Setup

Datasets We utilize the Tumblr GIF (TGIF) dataset for our training and vali-
dation purposes as discussed in Sec. 3.1. We evaluate our model on two datasets:
MSR-VTT [64] and UCF-101 [52], following the common practice. For these
datasets, we follow the sampling strategy as outlined in [63].
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“The dog is eating.”

I2VGen-XL
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Inputs Generated Frames
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a gun.”
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Inputs Generated Frames

Source: Westworld/HBO
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Fig. 5: Comparison studies with other image-text to video models. Given a source
image and a caption, frames are extracted from the generated 16-frame video at 256x256
resolution.

Implementations Our model is initialized with the exponential moving average
(EMA) weights of the Stable Diffusion v1.5 checkpoint1 and the improved ft-
MSE autoencoder weights2. We trained the model at 256x256 resolution for 7
epochs on a single node of 16 V100 GPUs for 25k steps. We used the AdamW
optimizer with a learning rate of 10−4. We set the weighting factor for perceptual
loss (λP ) as 10−2.

Metrics We report Frechet Video Distance (FVD) [54], CLIP Similarity (CLIP-
Sim) which is the average similarity calculated for all the generated frames with
the input caption and Perceptual Input Conformity (PIC) as described in [63]
for all methods. For comparison, we assess the zero-shot generation performance
on I2VGen-XL [70] and DynamiCrafter [63].
1 https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-

emaonly.ckpt
2 https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-

840000-ema-pruned.ckpt
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(a) A1: Cat is playing with wool (b) A2: Cat is dancing
(c) A1+2: Cat dancing and
playing with wool

Fig. 6: Pix2Gif showing composition capabilities for different types of motions. [GIFs
best viewed in Adobe Acrobat Reader]

Table 2: Ablation study comparing image translation methods with a focus on motion
coherency at varying cfg_img values.

Method / cfg_img 1.4 1.6 1.8 2.0

L2 ↓ PCC ↑ L2 ↓ PCC ↑ L2 ↓ PCC ↑ L2 ↓ PCC ↑

InstructPix2Pix [6] 23.429 -0.229 25.492 -0.028 27.037 -0.423 27.530 0.139
Pix2Gif-Base 7.580 0.989 5.188 0.987 5.595 0.992 7.029 0.991
Pix2Gif 1.746 0.995 1.972 0.995 2.944 0.997 4.076 0.997

4.2 Results

Comparisons with previous works Fig. 5 and Tab. 1 provide a qualita-
tive and quantitative comparison of three image-text to video models: I2VGen-
XL [70], DynamiCrafter [63], and our Pix2Gif.

In Fig. 5a, the I2VGen-XL model misshapes the dog’s face and generates
it sideways in a nonsensical manner. DynamiCrafter appears to disregard the
input parameters, as the initial frame differs significantly in position, color, and
texture. It is also challenging to discern whether the dog is eating or merely
moving its mouth. Our model, Pix2Gif, accurately retains all the dog’s details
and successfully depicts it eating from a plate. In Fig. 5b, we assess the mod-
els’ capabilities by generating a video from a relatively dark image. Once again,
I2VGen-XL starts strong, producing some impressive frames, but these soon turn
into highly stylized and improbable images. DynamiCrafter appears to misinter-
pret the input image, generating something significantly different, although it
seems to adhere to the caption. Conversely, Pix2Gif comprehends the inputs
effectively and produces corresponding motion while preserving the overall in-
tegrity of the source image.

Quantitatively, Pix2Gif excels in both the FVD and PIC metrics shown in
Tab. 1, which aligns with our observations of the frames generated in Fig. 5.
These frames effectively preserve the structure and closely adhere to the input
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Fig. 7: Ablation study between the earlier variants of our model by comparing average
similarity score for 100 samples.

prompts (source image and caption). However, Pix2Gif does not perform as well
in the CLIPSim metric, despite accurately following the caption. The other two
models as seen in Fig. 5 do follow the caption, but they fail to adhere to the input
image and produce plausible temporal transitions. This is partially attributed
to the inherent model design in these two methods. Both methods attempt to
generate a full sequence of frames at once using the 3D diffusion network, which
inevitably compounds the spatial and temporal dimensions. Moreover, the results
indicate that they function more as text-to-video models than image-text-to-
video models, especially DynamiCrafter. This discrepancy also raises questions
about the effectiveness of the CLIPSim metric for evaluating image-text-to-video
models and calls for more sophisticated metrics for evaluating video generation.

Compositionality of actions Fig. 6 illustrates an intriguing emerging capa-
bility of Pix2Gif : the ability to combine actions. In Fig. 6a, we see a cat playing
with wool, with only the cat’s paws and the wool moving. In Fig. 6b, we instruct
the cat to dance, resulting in the cat moving its body but the wool remaining
still. Finally, in Fig. 6c, we provide a caption that blends the actions from Fig. 6a
and Fig. 6b. The result is a scene where the cat is both moving the wool and its
body. This demonstrates Pix2Gif ’s ability to comprehend the caption and its
associated motion, and to convert that understanding into a GIF. Such compo-
sitional capability significantly increases user controllability, a crucial aspect for
practical applications.

4.3 Ablations

We design a few variants of Pix2Gif for our ablation studies:

– Pix2Gif-Base: We train InstructPix2Pix with our data, and append the text
prompt with “The optical flow is _.”.

– Pix2Gif-Motion-embed : The motion embedding layer is added to encode the
motion magnitude and combined with textual embedding.

– Pix2Gif-Warp: We further add the warping module into the model but dif-
ferently only use the warped feature for the LDM .
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Fig. 8: Ablation study on ways to input zW to LDM by comparing average similarity
score for 100 samples.

– Pix2Gif-Warp-add : Different from Pix2Gif-Warp, we instead add the warped
feature and source image feature as input to the LDM .

– Pix2Gif-Warp-concat : Instead of adding in Pix2Gif-Warp-add, we concate-
nate the warped feature and source image feature as the input, but do not
include the perceptual loss.

For comparative studies with our model’s variants, we generate an 8-frame
video. We use the X-CLIP model [37] to extract features from our generated
video, and CLIP to extract features from the source, target, and generated
frames. The optimal range of cfg_img for best results is considered to be [1.6,
2.2]. Throughout this discussion, we evaluate our model’s performance using four
metrics, which we believe effectively measure the different aspects of generating
motion through the image translation framework used in Pix2Gif.

Motion Coherency Our task is framed as an image translation problem with
motion magnitude as a guide. We assess the motion quality or temporal coher-
ence in the GIFs using L2 loss and Pearson Correlation Coefficient (PCC) for
InstructPix2Pix, Pix2Gif-Base, and Pix2Gif. The L2 loss evaluates the match
between the motion values of the generated frames and the actual inputs, while
the PCC checks if they follow the same trend. These metrics are calculated be-
tween the input motion magnitude values and the optical flow values, derived
from the source image and the generated frames. Our model exhibits the highest
correlation and the lowest L2 loss across all cfg_img values as seen in Tab. 2,
proving its efficacy and controllability in generating GIFs with specific motions.
The Pix2Gif-Base outperforms the original InstructPix2Pix, emphasizing the
importance of our new dataset.

Image-Video Similarity Score To evaluate the semantic properties of the
video produced by our model, we created two similarity scores: a source frame
score and a target frame score. The source frame score quantifies how well the
video retains the primary attributes of the source frame, essentially measuring
the accuracy of the source image portrayal throughout the video. The target
frame score indicates the precision of the scene or subject development from
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the source frame in the video. It also underscores the model’s ability to handle
uncertainty and potential changes, as the target frame represents a possible state
that the video might reach.

We began our experiments with Pix2Gif-Base and then enhanced it incre-
mentally, first with M (Pix2Gif-Motion-embed), then by adding W (Pix2Gif-
Warp). Here, we conducted an ablation study shown in Fig. 8 to understand
the best way to feed zW into LDM . Our experiments included feeding only zW
(Pix2Gif-Warp), adding it with the E(cI) (Pix2Gif-Warp-add), and concatenat-
ing both (Pix2Gif-Warp-concat). Both Pix2Gif-Warp-add and Pix2Gif-Warp-
concat had higher average similarity scores than Pix2Gif-Warp, and Pix2Gif-
Warp-concat performed the best. This can be attributed to the fact that in the
addition process, E(cI) loses its unique characteristics, which are required by the
diffusion model for effective unconditional denoising. Therefore, to achieve the
best results, we combined E(cI) and zW before inputting them into the concat
attention layer of the LDM . Now finally we integrate LP (Pix2Gif ) and com-
pare them in Fig. 7. As expected, Pix2Gif-Base was outperformed by the other
versions. Pix2Gif generated more coherent and controlled motion, albeit often
with limited extent. All models began to converge outside the optimal range,
producing similar frames. The Pix2Gif-Motion-embed model creates a signifi-
cant amount of one-directional motion, which can sometimes be nonsensical,
and hence the addition of W helps to mitigate this issue.

5 Limitations and Future Work

The current Pix2Gif model is our initial attempt to generate videos by treating
it as an image translation task. However, this method has some limitations that
prevent us from generating high-quality and long GIFs or videos. Firstly, the
model generates images with a resolution of 256x256 pixels. If these images
are used to generate subsequent frames, the quality of the frames deteriorates
further. Secondly, due to limitations in computational power, we are only able
to use a small portion of a larger, curated dataset for training our model. Our
primary objective now is to improve the quality of the generated frames, as this
could significantly enhance the effectiveness of this method.

6 Conclusion

In this work, we proposed Pix2Gif, an image-to-GIF (video) generation model
based on an image-to-image translation paradigm. To ensure temporal coherence
across frames, we proposed a motion-guided warping module that learns to spa-
tially warp the source image feature into the target one while maintaining visual
consistency via a perceptual loss. Starting from TGIF, we curated a new dataset
specifically used for training our model. The experimental results demonstrated
the effectiveness of our model to generate GIFs with better temporal coherence
compared with current state-of-the-art methods. Interestingly, the model also
exhibits better controllability and some emerging action compositionality.
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