
Supplementary Material: Linking in Style:
Understanding learned features in deep learning

models

Maren H. Wehrheim1,2 , Pamela Osuna-Vargas1,2 , and Matthias
Kaschube1,2

1 Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
2 Department of Computer Science and Mathematics, Goethe University Frankfurt,

Frankfurt, Germany
{wehrheim, osuna, kaschube}@fias.uni-frankfurt.de

S1 Code availability

The code can be accessed at https://github.com/kaschube-lab/LinkingInStyle.
git including code and example images to visualize individual unit representa-
tions.

S2 Linking networks

Alternatively to the linear regression described in Sec. 3.1, we also train two fully
connected neural networks (FC) to find a mapping between the R-space and the
W -space. The FC networks contain one hidden layer with a ReLu non-linearity.
We train two models with different loss functions. The first FC optimizes the
mean squared error between the original w and the prediction w∗:

L1 = ||w∗ − w||22 . (1)

The second nonlinear linking model incorporates information about the main
variance components of activations in both spaces R and W . Previous work [2]
has shown that the principal components of the W -space capture most relevant
information about the variance in the features of the generated images. To make
explicit use of this information, we train a second FC model that in addition to
L1 also optimizes the similarity of the projections onto principal components U
in W with their predictions via the linking network:

L2 = L1 + λ||(wTU)∗ − wTU ||22 . (2)

To this end, we first compute the PCA in W from the complete training set.
Each sample is then projected onto the first 10 PCs U and mapped through the
GAN, classifier, and linking network. We refer to the linear regression linking
network as LR, to the FC network trained with L1 as FCL1 , and to the FC
network trained with L2 as FCL2

. We observe a similar performance across all
of these models (Fig. S1), indicating that even a simple linear model is sufficient
to establish an accurate mapping between R and W .

https://orcid.org/0000-0003-3197-9947
https://orcid.org/0009-0005-9154-7515
https://orcid.org/0000-0002-5145-7487
https://github.com/kaschube-lab/LinkingInStyle.git
https://github.com/kaschube-lab/LinkingInStyle.git

2 Wehrheim et al.

Fig. S1: Linear regression and more complex linking networks achieve simi-
lar mapping results. A) High similarity between generated images (I) and full-cycle
mapped images (Ĩ) across the three types of linking networks studied for ResNet-50.
B) All three linking networks map the images into the W space with only small offsets
in the first PCs, indicating high similarity between the largest axes of variability. Dog
classes are color-coded. C -F) We compute the performance based on 1,000 different
initializations (i.e., randomly chosen ws and their generated images). We observe simi-
lar performance across all linking networks. The simple linear regression model (yellow)
performs similarly to the non-linear models (red and green) based on the mean squared
error (MSE) in W (C), as well as on several metrics in the image domain (D: L2; E:
LPIPS; F: MoCov2).

Linking in Style 3

S3 Extensions to other classifiers

Additionally to ResNet-50 reported in Sec. 4.2, we also analyze the performance
of the linking network for three other classifiers (AlexNet [3], DenseNet-201 [1],
IP-IRM [6]). Apart from the two commonly used CNNs (AlexNet and DenseNet-
201) we also include IP-IRM, as it was designed to contain highly disentangled
latent representations, which might have an effect on the mapping performance
to the W -space. Note that both AlexNet and DenseNet-201 have a higher-
dimensional latent space compared to ResNet-50, while IP-IRM was built on
the ResNet-50 architecture. We observe similar performances for all three types
of linking networks (see Fig. S2 for example images and Fig. S3 for loss func-
tions), with the exception of DenseNet, which shows a better performance for the
non-linear methods than linear regression. Note that DenseNet is also the model
with the largest representational space. Overall, these results indicate that our
method can be flexibly transferred to different classifiers.

Fig. S2: Examples of reconstruction performance for different classifiers.
We traine three different linking networks for four different classifiers (see Sec. S2).
The classifiers include AlexNet (second column), DenseNet-201 (third column), IP-
IRM (forth column), and ResNet-50 (last column). Here we depict one example of the
reconstruction performance after an image (left column) was mapped a full cycle, i.e.,
through the classifier, the respective linking network, and the GAN (as in Fig. S1A).
For comparison, we also include the ResNet-50 results from Fig. S1A.

Additionally, we demonstrate broader applicability of our approach by study-
ing ResNet-50 classifiers that were trained to differentiate gender or ethnicity
from human faces. Note that the data sets used for training these classifiers are
different from the data set used for training the GAN (FFHQ). Fig S4 shows

4 Wehrheim et al.

Fig. S3: Similar reconstruction performance across different linking net-
works. We compare the reconstruction performance of the different linking networks
for four classifiers. The different classifiers include AlexNet (first column), DenseNet-
201 (second column), IP-IRM (third column), and ResNet-50 (last column). For each
classifier, we compute the performance of the linking network as the mean squared
error (MSE) in the W -space (top row) for 1,000 different initializations (i.e., randomly
chosen ws and their generated images). Additionally, in the image domain, we compute
the pixel-wise L2 distance (second row), LPIPS (third row), and MoCov2 (last row)
between the original image (I) and the full-cycle mapped image (Ĩ). For comparison
we include the results for ResNet-50 (reproduced from Fig. S1).

single-unit representations using the label-free face-trained StyleGAN-XL and
classifiers trained on gender (top) or ethnicity (bottom), linked with linear re-
gression. Our method reveals that individual units in the penultimate layer en-
code complex, human-interpretable features related to gender or ethnicity.

Linking in Style 5

Fig. S4: Application to face-trained classifiers. For different classifiers trained
either to distinguish between genders (top) or ethnicity (bottom) our pipeline reveals
learned representations in several units in the penultimate layer.

6 Wehrheim et al.

Table S1: Image segmentation labels for different types of subclasses

Subclass Labels

dogs nose, snout, eyes, ears, tongue, head, body, legs, tail
birds beak, eye, head, leg, wing, body tail
fungi cap, stem

S4 Image segmentation model

As we study to what extend CNN classifiers learn fine-grained, abstract features
such as different shapes of snouts, we use image segmentation to reveal changes
in such concepts given changes in the representation space. Specifically, we use
the method introduced by [5] to predict segmentation masks from the activations
in the GAN using a few-shot learning approach (Fig. S5).

Fig. S5: Image segmentation method to extract fine-grained features. We
use the method introduced by [5] to generate fine-grained segmentation masks across
several concepts using a few-shot learning approach.

We label five instances per class with varying numbers of labels (see Table
S1). Note that, to the best of our knowledge, these labels show higher detail
than any open-source database for image segmentation.

The image segmentation model trained with five classes generalizes to similar
classes (e.g, other dog breeds; Fig. S6), drastically reducing the labeled data
needed.

Linking in Style 7

Fig. S6: Image segmentation model generalizes to other (similar) classes. We
train the image segmentation model for five dog classes and find high generalization to
other dog classes.

Additionally, we label a test set of another five images per class to validate
the performance of the image segmentation approach using the intersection over
union (IoU) between the labeled and predicted regions (Fig. S7). We observe
particularly high performance for fungi. For the other subclasses the performance
appears to be correlated with size and frequency of occurrence of the label.

Fig. S7: Image segmentation validation. We compute the intersection over union
(IOU) between labels of a manually labeled test set and the prediction using the few-
shot learning approach.

Depicting the labeled results indicates that errors in the segmentation masks
are most often confined to the border of the object (Fig. S8). Note that our
method monitors changes in the segmentation mask, hence such errors do not
affect much the performance of our approach, as long as these are consistent
across all images of the trajectory.

8 Wehrheim et al.

Fig. S8: Image segmentation validation – individual images. We depict the
difference between the original and predicted labels for images with the lowest IoU
(left), average IoU (center), and highest IoU (left).

Linking in Style 9

S5 Interpretation of single unit representations

S5.1 Supervised evaluation method

For each quantification metric (area, luminance, entropy, eccentricity, and angle)
and for each label (leg, body, tail, tongue, eye, nose, snout, ear, head), we can
find the units that encode the largest change. In the main text, we mostly report
changes in area, luminance, or entropy. In Fig. S9 we additionally show two
examples with a large change in the eccentricity of the ears (left) and a large
change in the angle of the nose and snout (right).

Fig. S9: Examples of units encoding a high change in eccentricity and angle.
We display the change along the image trajectory for tuning a single unit, as well as the
change in quantification metrics. Left) An example of a large change in ear eccentricity.
Right) An example of a large change in nose and snout angle.

We find these units through an exhaustive search across all units for the
largest change in ear eccentricity (Fig. S9 left) and snout angle (Fig. S9 right).
Specifically, we rank units by the amount of change for specific quantification
metrics. Although we observe some overlap between the ranking in units, each
metric allows us to discover a specific set of units. Figs. S10 and S11 show
examples of quantification metrics for specific labels. In Fig. S11 we observe
similar units to be relevant for luminance and entropy (e.g., row two corresponds
to the same unit in both metrics, and row five of luminance corresponds to row
three in entropy). However, we can also discover non-overlapping units such as
the unit with the highest entropy change , where only small changes in luminance
can be detected, while the color of the head of the dog becomes much smoother
(see Fig. S11, upper right row).

10 Wehrheim et al.

Fig. S10: Illustration of effects on the label ear caused by single unit acti-
vation changes, across different quantification metrics. For one example image,
we depict the changes associated with the change in the activation of a single unit,
focusing on those units which are identified to represent the largest changes in area
(left), eccentricity (middle), or angle of the ear (right). Different rows depict the effect
of different units.

Across different quantification metrics, we observe a continuous distribution
of feature changes that resembles a normal distribution (Fig. S12). Hence, R
may not be disentangled into single units that strongly encode a specific feature,
but rather several units represent one feature and in combination account for
the entire representation encoded in the classifier.

In the main text (see Fig. 6A and Sec. 4.4), we show how our method can be
used to discover disentangled representations in single units and illustrate exam-
ples. Here, we now quantify the sparsity (disentanglement) of R for individual
labels. Therefore, we first tune every single unit in R and generate the respec-
tive image. We then compute the change in each quantification metric caused by
the change in unit activation. This results in a vector with the same dimensions
as R for each metric and label. We then scale this vector to unit length and
compute the sparsity. A sparsity approaching one would indicate that few units
represent that label-metric combination, whereas a sparsity approaching zero
would indicate that this label-metric combination is represented across many
units (distributed). We repeat this process for several seeds. We observe that
some features (e.g., tongue, red, Fig. S13) are sparsely encoded, while others
are more distributed (e.g., head, gray, Fig. S13). Our method can hence reveal
insights into how R is structured in terms of disentangled representations.

Linking in Style 11

Fig. S11: Highest changes in the label head in luminance and entropy. For
one example image, we depict the units that were identified to represent large changes
in luminance and entropy of the head.

S5.2 Unsupervised evaluation method

Our unsupervised evaluation pipeline uses PUMP [4] to compare images. PUMP
is a feature matching method based on finding corresponding representations
between two images in an unsupervised fashion. Specifically, PUMP builds a
correlation volume between two images first using the local consistency of found
matches by iteratively comparing representations in a parametric module. Ad-
ditionally, PUMP specifies that each data point in the one image can at most
match to one point in the second image.

We use our unsupervised evaluation pipeline (see Sec. 3.2) to visualize feature
changes associated with individual units. In Fig. S14 we demonstrate how our
method highlights individual concepts that are tuned with activation changes in
a single unit. We produce such trajectories by continuously, linearly increasing
the activity of a single unit within a fixed range and generating the correspond-
ing sequence of images. We then use PUMP [4] to align this image sequence via
affine transformations using corresponding features between the images. Given
N images, we first align image IN to IN−1 using PUMP and the affine transfor-
mation to produce IaN . Then, we compute IaN−1 by aligning IN−1 to IN−2. IaN is

12 Wehrheim et al.

Fig. S12: Changes in individual metrics are similar to a Normal distribution.
For each quantification metric (area, luminance, entropy, eccentricity, angle) we display
the distribution of changes across all units. Note that we scale all metrics to be between
-1 and 1.

then again aligned to IaN−1. We repeat this procedure until image I0 is reached.
We then compute PUMP again on this aligned sequence, to extract and visualize
the local feature changes that are depicted in Fig. S14.

Additionally, we can compute the strength of global feature changes such as
translation or rotation from the affine transformation. Extracting these features
across several input instances reveals that some units are tuned for such global
representations. Specifically, unit 278 in Fig. S15 (orange) shows a clear prefer-
ence towards a translation to the lower right whereas units 300 (blue) and 1312
(yellow) are overall not encoding any global features.

Linking in Style 13

Fig. S13: Discovering disentangled concepts in R. We compute the average spar-
sity of each label and each quantification metric across all units in R to discover con-
cepts that are represented sparsely in R. Values close to one indicate high sparsity,
whereas values close to zero indicate distributed representations. The error bar is com-
puted across 100 different seeds.

Fig. S14: Unsupervised discovery of single unit concepts. Given an initial im-
age, we tune the activation of single units and use our unsupervised evaluation pipeline
to visualize the relevant concepts encoded by these units. The trajectories (right col-
umn) indicate the direction of the localized feature changes and the color describes the
activation strength of the tuned unit.

14 Wehrheim et al.

Fig. S15: Extracting global feature changes reveals location-tuned units. We
extract global features (translation, rotation) from the affine transformation computed
using our unsupervised evaluation method (Sec. 3.2).

Linking in Style 15

S6 Class relevance of single units

In the main text, we describe how single units can be relevant for a single class
and also show that some units are relevant for several classes (Sec. 4.4). In Fig.
S16 we additionally show the distribution of a single unit’s class relevance for
the five different dog classes, based on 100 different seed images. This analysis
allows to draw several conclusions about the structure of R. Firstly, it reveals
differences in a single unit’s relevance for different classes. For example, unit
1113 is highly relevant for the Chihuahua class but not for the Weimaraner
(Fig. S16, left). Hence, analyzing the units across classes can help to discover
concepts learned by the classifier to distinguish between classes. Secondly, since
class relevance is described as a distribution, sometimes with few outliers, our
method can be used to analyze the robustness of the classifier with respect to
single-unit changes in specific concepts for a given class.

Fig. S16: Distribution of class relevance of single units shows different dis-
tributions across classes. We compute the change in prediction probability for the
original input class when tuning a single unit in R. We observe that for different units,
some classes show a higher change in prediction probability than others. Also, across
100 examples per class, we observe that some examples are more robust to a change
in a unit’s activation than others.

16 Wehrheim et al.

S7 Counterfactual directions in R

In Sec. 3.3, we describe the application of our method to the generation of
counterfactual examples, and the analysis of the decision boundary. We compute
the counterfactual example of a given representation r with the aim of shifting
its predicted class to a target class ctarget while keeping the change in the image
minimal. To find a counterfactual direction, we randomly initialize the shift
vector and then optimize it to shift a representation r ∈ R in the direction of a
target class. The optimization results are deterministic for a given vector r and a
target class ctarget. However, we find a variety of counterfactual directions using
different initializations. In Fig. S17, we show additional examples of sequences
sampled along counterfactual trajectories for different starting conditions.

Fig. S17: Sampling along the counterfactual direction. Similar to Fig. 7 in the
main text, we generate image sequences by linearly sampling along a counterfactual
direction between an original and target class. The classifier’s prediction probability
for the target class is shown in the top left corner. Note the large increase in prediction
probability around the decision boundary (between the second to last and last image).

Additionally, in Fig. S18 we show more examples of the continuous feature
change along the counterfactual direction, similar to Fig. ?? in the main text. We

Linking in Style 17

observe mostly smooth changes in single features across the decision boundary,
but sometimes individual features change drastically, or even show kinks close
to the decision boundary.

Next, we show that the counterfactual direction is more sparse between some
pairs of classes than between others. We compute the sparsity of the counter-
factual direction across different initializations and show the distributions for all
combinations of the five dog classes (Fig. S19). We observe some classes to allow
for a less sparse counterfactual direction (e.g. original class 151 (Chihuahua) and
target class 254 (Pug)). Note that we here cycle the counterfactual representa-
tion through the linking network, GAN, and back into the classifier and only
report counterfactual directions that are actually reachable by the model. Com-
puting the sparsity of counterfactual directions is, in principle, also possible only
in R, however, R does not have to be continuous. Hence, our method identifies
directions that can be represented in R.

18 Wehrheim et al.

Fig. S18: Evolution of quantification metrics along the counterfactual tra-
jectory. For two counterfactual examples, we depict the changes in individual labels
and metrics. The generated images and respective segmentation masks along the coun-
terfactual trajectory are shown on the top. The prediction probability for the target
class is indicated in the upper left corner of each generated image. The evolution of the
quantification metrics for each label is shown below the segmentation masks (bottom
row). The decision boundary is marked by a gray dotted line. Note that, for simplicity,
we set the decision boundary in the middle between the last image that was predicted
as the original class and the first image predicted to be in the target class. Each color
represents one label type.

Linking in Style 19

Fig. S19: Different levels of sparsity between the counterfactual directions
of different class pairs. Given a target class, and an image generated from an origi-
nal class, we consider the shift vectors resulting from the counterfactual optimization
process described in Sec. ??. Across 10 different initializations, we measure the sparsity
s as in Eq. ?? for each counterfactual direction and show the distribution. Each row
depicts a different input image of the original class. The colors correspond to the target
class. The original class is indicated as the title of a column.

20 Wehrheim et al.

S8 Counterfactual directions in the GAN

As the StyleGAN-XL was trained with all ImageNet classes, we can also find
counterfactual directions in the GAN instead of the classifier. This allows for an
analysis of the change in R related to a given change in the class. In StyleGAN-
XL, a latent vector z and a class embedding c are mapped in the W -space using
a mapping network (Gm; see Sec. ??). Here we exploit the GAN’s property to
produce similar images (viewpoints, features) across classes when sampled from
the same z. To create a counterfactual example of one image of a given class, we
produce an example of a target class that utilizes the same z but a different class
embedding. We can then linearly interpolate in W between these two examples
and generate the respective images (Fig. S20 top left). Using our pipeline, we
can first extract the most relevant features that differ between classes (Fig. S20
right). We can then map all the resulting images in the classifier and analyze, for
example, the units in R that exhibit the largest change. We observe that these
units encode human-interpretable features such as a change in color or a change
in the shape of the ear (Fig. S20 bottom). Note that along these counterfactual
directions more features change, since we do not regularize on minimal shifts in
W as for the counterfactual directions in R. However, using the GAN allows us
to keep many global features similar while only changing the features that the
GAN learned to associate with specific classes. These analyses demonstrate that
the GAN not only acts as a generation tool but also offers a valuable source for
interpreting learned representations in the classifier.

Fig. S20: Counterfactual examples created in the GAN reveal relevant units.
We used the StyleGAN-XL to generate an image of a different class with the same view-
point (top left). We then use our proposed pipeline to analyze the relevant features that
change between the classes (right). Encoding the image trajectory into the classifier,
allows us to extract the units with the largest change. Using our analysis pipeline, we
observe that these units encode human-interpretable features such as a change in the
color or ear shape.

Linking in Style 21

S9 Replication to other classes

In this section, we show that our method also generalizes to other sets of classes.

S9.1 Fungi

First, we train our pipeline with four different classes of fungi (Agaric, Gy-
romitra, Stinkhorn, and Bolete). In Fig. S21 we identify units that represent
individual features of fungi and show that they are transferable between similar
classes (Fig. S22). Our method also reveals a high robustness of the different
classes of fungi to changes in single units. Only one unit (1131) has a strong
effect on the prediction probability (see Fig. S23).

Fig. S21: Single-unit representations in Agaric. Our method reveals units that
represent relevant features of fungi. We identify units that, for example, represent the
shape (eccentricity) and size (area) of the stem or cap. The images on the left show the
generated images along the trajectory of a single unit change (from left to right, each
row one unit). The right graphs show the corresponding changes in the quantification
metrics.

Our method can also be used to analyze the decision boundary between the
different classes of fungi. We show several counterfactual examples in Fig. S24.
Note that here we also observe a large increase in prediction probability once
the decision boundary is reached; however, the change appears to be less rapid
than for the dog breads, and the prediction probability increases further after
crossing the decision boundary. As shown in Fig. S25 the classifier seems to
be highly robust to general changes in area for both counterfactual examples,
whereas small changes in the entropy already change the predicted class.

S9.2 Birds

Additionally, we show the generalizability of our framework to six different
classes of birds (Brambling, House Finch, Indigo Bunting, Bee Eater, Jacamar

22 Wehrheim et al.

Fig. S22: Single-unit representations across different classes of fungi. We show
examples of representations in single units that are transferable across other classes of
fungi. However, the Stinkhorn (third row) seems to be encoded differently from the
other three fungi. The unit shown on the left that is selective for the size of the cap in
the three other fungi is rather selective for the color of the cap in the Stinkhorn than
for the size.

and Toucan). We train a linear linking model to map the different examples of
birds from the ResNet-50 representation layer to the W -space. Again, we find
that single units encode specific features and the features can be transferred be-
tween classes (Fig. S26). We further show that our method can again be utilized
to study counterfactual examples for different classes of birds (Fig. S27).

The two further examples (fungi and birds) studied in this section suggest
that our method can be transferred also to many other classes, hence opening up
the possibility of a comprehensive analysis of the representations and decision
boundaries of a classifier.

Linking in Style 23

Fig. S23: Different classes of fungi show high robustness to changes in indi-
vidual units. For 100 different seeds, we compute the change in prediction probability
when altering the activation of a single unit. Left) We observe high robustness for some
classes (Gyromitra or Stinkhorn), whereas others (Agaric and Bolete) appear to be less
robust. Right) Only unit 1131 has on average a strong effect on the prediction proba-
bility of the Bolete (≥ 0.15). We depict an example image of an Agaric and a Bolete
for this unit. The prediction probability for the Agaric does not change, whereas the
prediction of the Bolete changes to Mushroom.

24 Wehrheim et al.

Fig. S24: Counterfactual examples for several classes of fungi. We depict the
images along the trajectory of generated counterfactual examples. The example image
of the original class, indicated on the left, is changed using our optimization procedure,
such that the target class, indicated on the right, is predicted, while minimizing the
change in W .

Linking in Style 25

Fig. S25: Examples of the trajectories of feature changes along counterfac-
tual direction. For two counterfactual examples, we depict the changes in individual
labels and for all quantification metrics. The generated images and respective seg-
mentation masks along the counterfactual trajectory are shown on the top left. The
prediction probability for the target class is indicated in the upper left corner of each
generated image. The evolution of the quantification metrics for each label is shown
below the segmentation masks. The decision boundary is marked by a gray dotted line.
Note that for simplicity, we set the decision boundary in the middle between the last
image that was predicted as the original class and the first image predicted to be in
the target class. Each color represents one label type.

26 Wehrheim et al.

Fig. S26: Single-unit representations across different classes of birds. We
show that representations in single units are transferable also across classes of birds.
However, the changes are much more subtle than in dogs and fungi.

Linking in Style 27

Fig. S27: Counterfactual examples for several classes of birds. We depict the
images along the trajectory of generated counterfactual examples. The example image
of the original class, indicated on the left, is changed using our optimization procedure,
such that the target class, indicated on the right, is predicted, while minimizing the
change in W .

28 Wehrheim et al.

Fig. S28: Examples of the trajectories of feature changes along counter-
factual directions. We depict the changes in individual labels for all quantification
metrics (bottom row). The generated images and respective segmentation masks along
the counterfactual trajectory are shown on the top. The prediction probability for the
target class is indicated in the upper left corner of each generated image. The evolu-
tion of the quantification metrics for each label is shown below the segmentation masks.
The decision boundary is marked by a gray dotted line. Note that for simplicity, we
set the decision boundary in the middle between the last image that was predicted as
the original class and the first image predicted to be in the target class. Each color
represents one label type. Note that, for instance, for ’leg’ several metrics indicate a
kink near the decision boundary.

Linking in Style 29

References

1. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely Connected Con-
volutional Networks (Jan 2018). https://doi.org/10.48550/arXiv.1608.06993

2. Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: GANSpace: Discovering In-
terpretable GAN Controls (Dec 2020). https://doi.org/10.48550/arXiv.2004.
02546

3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Con-
volutional Neural Networks. In: Advances in Neural Information Processing Sys-
tems. vol. 25. Curran Associates, Inc. (2012)

4. Revaud, J., Leroy, V., Weinzaepfel, P., Chidlovskii, B.: PUMP: Pyramidal and
Uniqueness Matching Priors for Unsupervised Learning of Local Descriptors. pp.
3926–3936 (2022)

5. Tritrong, N., Rewatbowornwong, P., Suwajanakorn, S.: Repurposing GANs for One-
shot Semantic Part Segmentation (Jul 2021). https://doi.org/10.48550/arXiv.
2103.04379, http://arxiv.org/abs/2103.04379, arXiv:2103.04379 [cs]

6. Wang, T., Yue, Z., Huang, J., Sun, Q., Zhang, H.: Self-Supervised Learning Disen-
tangled Group Representation as Feature (Oct 2021). https://doi.org/10.48550/
arXiv.2110.15255

https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.48550/arXiv.2004.02546
https://doi.org/10.48550/arXiv.2004.02546
https://doi.org/10.48550/arXiv.2004.02546
https://doi.org/10.48550/arXiv.2004.02546
https://doi.org/10.48550/arXiv.2103.04379
https://doi.org/10.48550/arXiv.2103.04379
https://doi.org/10.48550/arXiv.2103.04379
https://doi.org/10.48550/arXiv.2103.04379
http://arxiv.org/abs/2103.04379
https://doi.org/10.48550/arXiv.2110.15255
https://doi.org/10.48550/arXiv.2110.15255
https://doi.org/10.48550/arXiv.2110.15255
https://doi.org/10.48550/arXiv.2110.15255

	Supplementary Material: Linking in Style: Understanding learned features in deep learning models

