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Fig. 1: Visualization and systematic quantification of a classifier’s learned
representations. Left: We introduce a linking network (red arrow) that links an
activation pattern r ∈ R in the penultimate layer of a classifier to the latent space
of StyleGAN-XL [57], thereby visualizing the representations learned by the classifier.
Building on these visualizations, we propose a pipeline to automatically and objectively
analyze a large number of learned representations in R by evaluating the changes be-
tween images caused by perturbations in R. We show two applications of how our
method can be used to understand learned features in deep learning models. Middle:
We systematically ’tune’ the activations of all units in R separately to obtain a com-
prehensive overview across sparsely encoded representations across thousands of units.
Right: The linking network can visualize counterfactual examples and our quantifica-
tion pipeline reveals trajectories that provide insights into learned concepts relevant
for the classifier’s decision.

Abstract. Convolutional neural networks (CNNs) learn abstract fea-
tures to perform object classification, but understanding these features
remains challenging due to difficult-to-interpret results or high compu-
tational costs. We propose an automatic method to visualize and sys-
tematically analyze learned features in CNNs. Specifically, we introduce
a linking network that maps the penultimate layer of a pre-trained clas-
sifier to the latent space of a generative model (StyleGAN-XL), thereby

https://orcid.org/0000-0003-3197-9947
https://orcid.org/0009-0005-9154-7515
https://orcid.org/0000-0002-5145-7487


2 Wehrheim et al.

enabling an interpretable, human-friendly visualization of the classifier’s
representations. Our findings indicate a congruent semantic order in
both spaces, enabling a direct linear mapping between them. Train-
ing the linking network is computationally inexpensive and decoupled
from training both the GAN and the classifier. We introduce an auto-
matic pipeline that utilizes such GAN-based visualizations to quantify
learned representations by analyzing activation changes in the classi-
fier in the image domain. This quantification allows us to systemati-
cally study the learned representations in several thousand units simul-
taneously and to extract and visualize units selective for specific se-
mantic concepts. Further, we illustrate how our method can be used
to quantify and interpret the classifier’s decision boundary using coun-
terfactual examples. Overall, our method offers systematic and objec-
tive perspectives on learned abstract representations in CNNs. https:
//github.com/kaschube-lab/LinkingInStyle.git

1 Introduction

Deep learning models learn abstract concepts in their hidden layers when trained
to perform a task. However, the models do not provide plausible explanations
when they fail, thereby hampering their trustworthiness. Unraveling the learned
concepts that influence a classifier’s decisions can reveal inherent biases [20, 37]
or identify failures in these models [48,65].

Recent work has focused on interpreting deep learning models’ behavior by
explaining their weights, units, subnetworks, or latent representations [56]. In-
dividual units in deep neural networks (DNNs) have been shown to be selective
for single human-interpretable concepts such as faces, food, textures, or even
multimodal concepts [3, 4, 18, 43, 53, 69, 71]. It has since been an open debate
whether DNNs learn disentangled, sparse representations in individual units or
whether representations are distributed across many units, a phenomenon often
referred to as feature superposition [14,22,24] and hypothesized to contribute to
adversarial vulnerability [15,17].

Recent efforts have also been dedicated to understanding the representations
that form the decision boundaries in DNNs trained for visual object classification
[25, 32, 33, 63]. Counterfactual explanations present an empirical perspective for
interpreting how deep learning models make decisions. Consider an instance
of a given class (e.g., an image of a dog), a counterfactual example represents
a slightly altered version of that instance such that the classifier predicts a
target class (e.g., cat). Crucially, the change in the original instance should
be minimal and human-interpretable to be effective. This excludes adversarial
examples [8, 68, 70], where small pixel perturbations change the prediction but
remain unrecognized by humans.

For computer vision applications, explainability methods greatly benefit from
providing human-comprehensible visualizations of single examples. However, hu-
man visual inspection is inherently subjective and only possible for a few fea-
tures, prohibiting an unbiased and systematic evaluation of the high-dimensional
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representations in CNNs. Studying all potential configurations of representations
poses an intricate combinatorial challenge, hence visual inspection soon becomes
infeasible and cannot provide a comprehensive and objective understanding of
learned features in hidden layers.

Generative adversarial networks (GANs) [19] are characterized by a latent
space that is continuous and semantically structured, enabling the visualization
of feature representations, including counterfactual examples [39, 62]. However,
as GANs were usually trained with a single data category to ensure the gener-
ation of high-quality images, their ability to visualize learned representations in
classification models required extensive (re-)training and remained infeasible for
multi-class categorization problems. Only recently, the StyleGAN-XL [57] allows
to generate images of all ImageNet classes from a single latent space.

In this work, we present a broadly applicable method to objectively and sys-
tematically analyze features encoded in the penultimate layer of CNNs trained
for object classification. This is achieved in two steps: Firstly we establish an effi-
cient feature visualization tool based on a pre-trained StyleGAN-XL that can be
flexibly linked to various pre-trained CNNs (overcoming extensive (re-)training
strategies of several previous studies). Specifically, we introduce a linking net-
work that connects the penultimate layer, here termed representation space, of
a CNN to the latent space of a pre-trained StyleGAN-XL. Linking these two
spaces allows us to visualize arbitrary feature dimensions in the classifier. Sec-
ondly, we establish methods for an automatic assessment of learned features in
the classifier’s representation space using unsupervised tracking methods [54]
and few-shot image segmentation [64]. We envision our pipeline to offer novel re-
search applications and show examples in Sec. 4. First, we analyze and quantify
the features encoded in each of the several thousand units of the penultimate
layer to build summary statistics of a classifier’s learned concepts. This also
enables us to reveal class-relevant units encoding human-interpretable features,
shedding new light on the recurring question of whether features are represented
in individual units in a rather disentangled or superimposed fashion. Second,
we probe the classifier’s decision boundary to identify and interpret the most
relevant features underlying classification. Our contributions are as follows:

– A simple and easy-to-train linking network to visualize learned representa-
tions in CNNs.

– An automated pipeline to quantify these high-dimensional representations
enabling their systematic analysis and objective characterization via sum-
mary statistics.

– We highlight two applications of our method: i) to reveal learned abstract
concepts in single units and ii) to examine a classifier’s decision boundaries.

2 Related Work

Explainable AI (XAI) aims to provide human-understandable explanations for
the features learned and decisions made by an AI system. In this context, some
research argues for the relevance of sparse representations to encode abstract
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features within single units [2,5,11,12,16,41,47], others highlight the importance
of distributed highly robust representations [13,40,45]. A variety of methods that
explain the learned representations in pre-trained models exist [1,56], including
GradCAM [58], DeepLIFT [61] or LIME [55]. These methods usually visualize
single features or saliency maps but do not quantify the what and how, e.g.,
larger eyes or different color, without additional user input.

GANs generate near photorealistic images [7, 19, 31, 34–36] and manipulat-
ing their latent code smoothly alters features of the generated image [26, 28,
29, 50, 59, 60, 66]. Recent work shows that semantic concepts in GANs allow to
generate image segmentation masks, using, for example, unsupervised cluster-
ing [49,67], few-shot learning [64], or self-supervised contrastive approaches [44].
Representations of (pre-trained) classifiers have previously been used to guide
the generative process or to build meaningful latent spaces [6,9,39,62]. In recent
work, GANs have been used to visualize changes in single attributes for coun-
terfactual examples of a classifier [39,62]. Lang et al. [39] incorporate a GAN in
the training procedure of the classifier and then extract user-defined attributes
that change the classifier’s output. However, this approach is computationally
expensive and does not allow to interpret single units in the classifier.

Previous work on GAN-based image editing or counterfactual explanations
in computer vision often focuses on visualizing learned representations or relies
on user input to quantify the learned concepts [21,23,28,29,46,50,59,60,66]. [30]
and [52] define a set of attributes a priori such that a manipulation induces a
change in the predicted category. Other methods rely on text guidance to gener-
ate difficult images for the classifier [51] or identify the classifier’s sensitivity to
certain features [42]. However, methods that enable an objective and comprehen-
sive study of learned(class-relevant) features using photorealistic visualizations
and flexibly allowing for an analysis of any combination of units are still lacking.

3 Method

Next, we describe our approach for uncovering learned representations in a clas-
sifier. The core of our method is a linking network that learns a mapping between
the classifier and the latent space in StyleGAN-XL (Sec. 3.1). We then intro-
duce a pipeline to automatically analyze learned concepts (Sec. 3.2). Finally,
we propose different applications, demonstrating how our method can be used
to understand single units as well as distributed representations relevant for a
classifier’s decision (Sec. 3.3).

3.1 Linking network

We introduce a linking network that establishes a connection between the clas-
sifier and the GAN to visualize learned representations in the classifier (Fig. 2
red arrow). We utilize the recently proposed pre-trained StyleGAN-XL [57], as
it produces high-quality images and learns a single latent code across all classes
without extra class-conditional input in the higher layers of the generator. For
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a given style code w ∈ W , corresponding to a non-linear combination of a class
embedding vector c and a random latent vector z, the generator Gs creates an
image I. As we are interested in studying the internal representations of CNNs,
we input the generated image into the classifier and extract the respective acti-
vation pattern r in the penultimate layer, which we call the representation layer
R. Following this procedure, we generate 5,000 training instances of (w, r)-pairs
for each class and train a network that maps the activations into W :

w̃ = f(r), (1)

where w̃ is the predicted w, f is the linking network and r ∈ R is a specific
activation vector. Thus, the linking network acts as a bridge between the classifier
and the generative model and offers the possibility to perform a full cycle, that
is w → I → r → w̃ → Ĩ. In the simplest scenario, we use a linear regression
model to fit a linear mapping between the two spaces based on the least-square
distance (see Supplement for more complex linking networks).

Fig. 2: Visualizing and quantifying learned features in CNNs. A) The genera-
tor Gs generates an image I from a given w ∈ W . I is input to the classifier from which
the corresponding activation vector r ∈ R is extracted. Using a set of (w, r)-pairs, we
train a linking network (red arrow) to create a link between the classifier and the GAN.
We then perturb the activation pattern r to visualize learned representations in R us-
ing the GAN. B) Automatic quantification of semantic concepts. Left (unsupervised):
We introduce an unsupervised method to find matching points between images Io and
Ip. First, we use PUMP [54] to compute an affine transformation and align the two
images to remove global changes such as translation or zoom (center, top: non-aligned
images, bottom: aligned images). We then compute PUMP again to find local changes
not accounted for by the affine transform and compute the vector field to visualize
the changes. Right (supervised): We compute the segmentation mask for each image
separately following [64]. Then, we quantify each semantic label in an image according
to different evaluation metrics: area (shown here), luminance, entropy, eccentricity, and
angle. For each metric, we compute the change induced by a perturbation in R.
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3.2 Analyzing learned representations

CNNs learn abstract semantic concepts like eyes or faces. Whereas humans easily
visually detect abstract concepts, quantifying them is challenging. In addition
to visualizing examples of learned representations, we here also introduce two
methods to objectively and systematically quantify semantic concepts learned
by the classifier to increase the explainability of CNNs. Specifically, we intro-
duce an unsupervised method that aids visual inspection and quantifies regional
features. Additionally, we propose a supervised method to facilitate the interpre-
tation of learned features using image segmentation (area, luminance, entropy,
angle, eccentricity). The features analyzed by these two methods are revealed by
comparing an original image Io to an image Ip generated after perturbing Io’s
representation r.

Unsupervised local descriptors matching We use an unsupervised motion
tracking pipeline to reveal learned features by analyzing differences across im-
ages associated with perturbations in the classifier’s activation space (Fig. 2B
unsupervised). First, we use PUMP [54], an unsupervised method that finds
pixel correspondences between Io and Ip, to compute an affine transformation.
We then apply the affine transformation to Ip, hence minimizing the effect of
global displacement (rotation, scaling, etc.). Finally, we again compute PUMP
to find the set of dense correspondences and visualize the vector field of local
changes.

Semantic concept quantification through image segmentation We hy-
pothesize that a classification model learns abstract semantic concepts (e.g., ear
shape, fur type) to differentiate between classes. To capture changes in such
semantic concepts, we adopt a few-shot image segmentation approach (Fig. 2B
supervised) based on [64]. This method leverages the intermediate activation out-
put of the generator Gs to learn an image segmentation model from few labeled
examples only. The few-shot nature and generalizability across classes (see Sup-
plement) of this approach reduce the workload required to produce annotations,
thus allowing for more detailed labels. To reduce the computational cost we here
use only every second layer of Gs and additionally downsample the output to
128× 128 pixels (instead of 256× 256). We label five images per class for a sub-
set of classes and train a segmentation model with three convolutional layers for
100 epochs. For any generated image, we can then compute different metrics to
quantify the segmented parts, each of which represents a semantic concept (e.g.
eyes, tongue). First, we extract the area, luminance, and entropy (smoothness)
for each identified segment. Finally, to study its shape and orientation, we fit an
ellipse to each segmented component and compute the eccentricity and angle. In
total, we characterize each image by 45 measures (5 metrics, 9 semantic labels).
Moreover, to test whether a perturbation in r affects only one or many semantic



Linking in Style 7

concepts, we define the label sparsity s according to [27]

s(x) =

√
k − ∥x∥1

∥x∥2√
k − 1

, (2)

where x ∈ Rk is the change in label vector induced by a perturbation in r
and k represents the label vector’s dimension (here, k = 9 considering a metric
separately (e.g., area), or k = 45 for the complete set of measures). If s is
close to one, the label vector is sparse, whereas values approaching zero describe
distributed representations.

3.3 Applications

We propose several applications to systematically analyze the learned features
in the classifier’s representation space using our linking network and automatic
quantification pipeline. First, we analyze the representations learned by single
units. To this end, we map an image Io into the classifier and extract the acti-
vation r ∈ R. We then alter r of a unit of interest, map the perturbed activation
rp into W , and generate an image Ip. We can continuously visualize a whole tra-
jectory of the representations encoded in a single unit by linearly altering that
unit’s activation (between the empirical minimum and maximum) and generat-
ing the corresponding sequence of images. We repeat this process for all units in
R and quantify the encoded representations using the changes along the image
sequence to compute summary statistics across several thousand units and to
identify units with certain properties.

Second, we analyze distributed representations that form the classifier’s deci-
sion boundary. Specifically, we find counterfactual explanations by changing r of
an image of class corig such that the prediction logits of a target class octarget(r)
are maximized with minimal changes only. We therefore minimize:

L(r,∆r) = −octarget(r +∆r) + λ1ocorig(r +∆r)− λ2LID (3)

where λ1 and λ2 are weighting coefficients, empirically set to λ1 = 0.6, λ2 = 10.
LID is an extra penalization term to preserve the identity of the object in the
W -space:

LID(r,∆r) =
f(r)f(r +∆r)

∥f(r)∥2∥f(r +∆r)∥2
(4)

The shift ∆r is optimized using gradient descent until the predicted class for
image Gs(f(r +∆r)) is ctarget but at most for 2,000 steps.

4 Experiments & Results

In the following sections, we demonstrate the feasibility (Sec. 4.1) and perfor-
mance (Sec. 4.2) of our proposed linking network. We then demonstrate how our
method can aid our understanding of the learned representations in the hidden
layers of a classifier (Sec. 4.3 - 4.5). In the main text, we report results with the
ResNet-50 classifier (see Supplement for other classifier architectures).



8 Wehrheim et al.

4.1 Similarities between W and the representation space R

In this work, we introduce methods to interpret learned representations in CNNs
trained on object classification by linking the representation space R of the
classifier to the W -space in StyleGAN-XL. Finding a simple (or even linear)
mapping between R to W may be possible if the representations within the two
spaces are sufficiently similar, which we study in the following.

First, since the penultimate layer of the classifier contains class-specific rep-
resentations, we test if the W -space also separates classes. We test this using
k-means clustering due to its simplicity, but other clustering or classification
methods (supervised or unsupervised) could be used instead. Specifically, we re-
peatedly fit a k-Means clustering (k = 5) to five randomly selected ImageNet
classes and evaluate the performance using the Adjusted Rand Index (ARI) be-
tween the predicted clusters and the real class labels. We observe clustering by
classes in both, the representation space and the W -space (Fig. 3A left), indi-
cating that R and W separate classes to a similar degree.

Next, we use representation similarity analysis (RSA) to compare R and W
on the representational level [38]. We first compute similarity matrices (based
on pairwise correlations) and dissimilarity matrices (based on the Euclidean
distance) in W and R separately across sets of 5 randomly chosen classes (as
above) and then compute the correlations between these (flattened) matrices in
W and R revealing high similarities between the two spaces (Fig. 3A right).

The robust clustering performance signifies a substantial degree of class de-
marcation within both spaces. The high representation similarity suggests a con-
gruence in the representation of abstract concepts between W and R. Together,
these findings suggest that simple (linear) models may be adequate for estab-
lishing a functional linkage between these two spaces.

4.2 Linking the representation space to W

The core of our method is a linear regression model that we train to link the
representation space R in the classifier to the W -space in the StyleGAN-XL (Fig.
2 red arrow, see Supplement for more complex (non-linear) linking networks).
First, we generate 5,000 images per class for several classes, all of which are
correctly classified. We then encode these images into the classifier and extract
the activations in the representation layer R. We then train the linear regression
on the pair of activations r ∈ R and the corresponding w ∈ W , using 5,000
examples per class.

We assess the performance of this linking network in W as well as in the
image domain using a newly generated test set. We observe that after mapping
an image for a full cycle, i.e., w → I → r → w̃ → Ĩ, the mapped image is highly
similar to the original image (Fig. 3B). We quantify the loss in W as the mean
squared error (MSE) between the original w and the cycled prediction w̃ and
observe a high performance (loss values close to 0) that is significantly better
than that obtained for randomly selected images (Fig. 3C left). Moreover, we
obtain consistent results for a comparison within the image domain using the
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Fig. 3: Feasibility and performance of linking network. A) High similarity be-
tween StyleGAN-XL’s W -space and representation space R in ResNet-50. Across 100
repetitions, 100 examples for five different ImageNet classes are sampled. Left: We fit
a k-Means clustering (k = 5, 20 initializations) on the selected examples and compute
the Adjusted Rand Index (ARI) between the predicted clusters and the real class la-
bels. Right: Learned representations in W and R are highly similar, shown here by
high average correlations between flattened similarity (correlation) and dissimilarity
(Euclidean distance) matrices of the selected examples computed for the two spaces.
B) The trained linking network achieves high similarities between generated images
(I) and images cycled through the linking network and the GAN (Ĩ). C) We quantify
the performance of the linking network by the MSE between w and w̃ and by the
perceptual image distance MoCov2 [10] between I and Ĩ.

perceptual distance measure MoCov2 [10] (Fig. 3C right, see Supplementary Fig.
S1 for other image similarity metrics).

4.3 Conceptualizing single-unit representations

In this section, we demonstrate how our method can be used to effectively vi-
sualize abstract concepts encoded in individual units in the classifier, and to
quantify systematically such representations across large numbers of units. For
a given input image and unit, we incrementally alter its activation, a process that
yields a sequence of images, enabling a visual inspection of variations in salient
features encoded in that unit. Our unsupervised method additionally visualizes
these features in a vector field (Fig. 4). As a classifier’s hidden layers contain
large numbers of units (here 2,048), such that visual inspection is impractical,
we propose an automatic analysis pipeline allowing us to examine all units in R.
Specifically, we use semantic image segmentation to evaluate changes in area, lu-
minance, entropy, eccentricity, and rotation angle of each segmentation label. We
find individual units that represent specific features such as gender or color (see
Fig. 4A). These single-unit representations can be robust across classes (Fig. 4B)
and differ between units (Fig. 4C). Note that our method also reveals relevant
features when the classifier and the GAN were trained on similar yet different
datasets (see Supplementary Fig. S4).

Next, to test whether R contains disentangled feature representations, we
quantify each unit’s label sparsity (Eq. 2). We now focus on different dog classes,
as dogs share many features but also show a high variability such as different
fur colors, or ear shapes. We perturb each unit separately and compute the label
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Fig. 4: Automatically revealed abstract concepts encoded in individual
units. We tune the activation of individual units in R and visualize the results. We
observe abstract concepts to be encoded in single units, such as gender or color (A),
and to be stable across different classes, shown here for the cap sizes of different fungi
(B). C) Different units encode different concepts that can be visualized with our un-
supervised tracking method (vector fields).

sparsity from the median change in each label (e.g., legs, body, etc.; Eq. 2) across
100 example images. We find long tail distributions of label sparsity, with few,
highly sparse units, that vary between classes (Fig. 5A left), showing highly dis-
entangled representation for features such as legs or ears (Fig. 5A right). Next,
asking whether R exhibits a semantic order, we visualize single-unit representa-
tions using tSNE (Fig. 5B). We find some labels to occupy specific regions in the
representational space, with interdependence (overlap) between several labels
(e.g. snout, ear, and head). Clustering the semantic concepts reveals disentan-
gled (Fig. 5C, cluster 9) as well as entangled representations (Fig. 5C, clusters
18 and 65) suggesting superposition of several labels.

4.4 Class relevance of single units

Next, to systematically reveal the influence of single units on the classifier’s
prediction, we perturb each unit individually, visualize the new image, and ex-
tract the new prediction probability from the classifier given this image. We
find that several units have a discernible effect on the prediction (Fig. 6A). Our
systematic quantification of the entire representation space allows us to identify
class-relevant units (average change in probability greater than 0.15) that are
unique to single classes, as well as a few units that are relevant to several classes
(Fig. 6B). Further, correlating the changes in prediction probability associated
with each unit across classes reveals clusters of classes suggesting similar rep-
resentational manifolds (e.g. between Chihuahua, Weimaraner, and Pug; Fig.
6C). Additionally, visualizing the representations encoded in the class-relevant
unit shared between most example classes (Fig. 6B) reveals that such units can
encode human-interpretable semantic concepts such as color or the length of
the snout and can even cause a change in the predicted class (Fig. 6D, see the
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Fig. 5: Overview of features represented by individual units for the 2,048
units in the hidden layer of the ResNet-50 classifier. A) Left: We compute
the label sparsity of each quantification metric (here area, see Supplement for other
metrics) across all units for 100 test seeds. Different classes exhibit different levels
of sparsity. Right: Highly sparse units reveal disentangled representations of concepts
such as long legs, larger eyes, or longer ears. B) R is semantically ordered. We encode
all changes in area induced by single-unit perturbations into a low-dimensional space
using tSNE and color units by the label with the strongest change. Regional overlap
between labels indicates interdependent representations of these concepts; as observed
for snout, ear, and head, but not for legs and body. C) Hierarchical clustering of the
label vectors reveals clusters representing disentangled concepts (cluster 9) as well as
combinations of previously observed overlapping concepts (clusters 18 and 65).

Fig. 6: Single units encode class-relevant representations. We analyze the effect
of single-unit perturbations on the classifier’s prediction probabilities. A) We depict
the distributions of the change in prediction probability (softmax) for five example
classes averaged across 100 test seeds per class. B) Class-relevant units can be shared
between classes. The Venn diagram shows the number of highly class-relevant units
(average change in probability higher than 0.15) in each class. Further, our method
can uncover robust classes that are not affected by single-unit perturbations (here
e.g., Border Collie). C) Correlating the changes in the classifier’s prediction over all
units reveals similarities in class encodings. Whereas Chihuahua, Weimaraner, and Pug
rely on similar representations (high correlations), Schnauzer and Border Collie appear
to be encoded differently (low correlations). D) Varying the activation of the most
relevant unit in B–which strongly affects prediction probabilities (upper left number)
of all classes but the Border Collie (bottom row)–reveals human-interpretable features.
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change in the classifier’s probability of predicting the original class indicated in
the upper left corner).

4.5 Discovering the classifier’s decision boundaries

In Sec. 4.3 we show that our method can reveal learned representations in sin-
gle units. However, our method can also be extended to visualize and quantify
representations encoded in distributed activations in R. Specifically, we analyze
the representations that change across a classifier’s decision boundary. For an
image of a given class, we linearly manipulate the activation r ∈ R to shift the
prediction probability towards a target class (see Eq. 3). We refer to the point in
R at which the predicted class changes as the decision boundary. Our proposed
method allows to generate human interpretable visualizations of the representa-
tions along such counterfactual directions, showing that images at the decision
boundary are visually indistinguishable, despite rapid changes in the prediction
probability (Fig. 7A, see probability insets). Using our quantification method,
we can zoom in on specific concepts (ear, legs, etc.) and pinpoint how their rep-
resentation changes across the decision boundary (Fig. 7B right). Such level of
specificity is not reached in previous models, including GradCAM [58], which
may emphasize less interpretable properties, such as features of the background
(Fig. 7B left). Along the counterfactual trajectory, common image similarity met-
rics (MSE, LPIPS) show smooth trajectories across the decision boundary (Fig.
7C left). In contrast, our quantification pipeline draws a more comprehensive
picture of the decision-relevant features learned by the classifier (Fig. 7C right).
For example, between Pug and Chihuahua, we observe a continuous increase in
the area of the ears while the luminance saturates after the decision boundary
(Fig. 7C right, top row, pink lines). Between the Border Collie and Chihuahua,
the luminance of the head, eyes, and body increases around the decision bound-
ary (Fig. 7C right, bottom row, gray and orange lines). Our method hence offers
the opportunity to identify features (ir-)relevant to a classifier’s decision.

5 Discussion and Limitations

We introduce a method that leverages the semantic structure in a pre-trained
GAN, and thus does not require intensive (re-)training as often suggested by
previous work (e.g., [6,9,39]). Our approach offers a computationally inexpensive
method for analyzing several different classifiers (trained on similar datasets as
the GAN), as training the linking network is fast. Our method even generalizes
to models trained on similar but non-overlapping datasets (e.g., different face
datasets). Currently, our method does not generalize to ViTs, where regional
representations are encoded, as the W -space is not regionally disentangled.

Our analysis pipeline uses a few-shot image segmentation model, allowing us
to identify fine-grained features, while minimizing time-intensive image labeling.
Note that, we use few-shot segmentation as currently, no large-scale segmentation
dataset exists that contains as much feature detail. A network trained with
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Fig. 7: Counterfactual trajectory between classes reveals the classifier’s de-
cision boundary. Given an input image (upper row: Pug, bottom row: Border Collie,
in A-C) we manipulate its activation r ∈ R to produce a counterfactual example of
a given target class (upper and bottom row: Chihuahua, in A-C). Based on our link-
ing network, we visualize and quantify the representations along the counterfactual
trajectory. A) Abrupt transitions in prediction probability at the decision boundary,
with changes hardly visible to the human eye. For the two counterfactual examples,
we show the original input image (left), the two images around the decision boundary
(center), and the final image of the target class (right). The probability of the tar-
get class is indicated in the upper left corner. The predicted class for each image is
coded by the frame-color. B) Quantifying the changes at the decision boundary re-
veals human-interpretable concept changes with our method (right), which previous
methods, such as GradCAM [58] could resolve (left). C) Left: Common similarity met-
rics (MSE, LPIPS) fail to capture the abrupt transition in the classifier’s prediction
probability (pctarget , green). Right: Our method reveals comprehensive trajectories to
interpret a classifier’s decision boundary across several labels and metrics. The decision
boundary is indicated by the vertical dashed line. All metrics along the trajectory are
computed using the original image as a reference and normalized.
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more data could further improve the segmentation masks. However, averaging
across many generated images, as done here, diminishes errors due to imprecise
segmentation masks. Note that, despite being trained only on a limited set of
classes (e.g, some dog breads), the image segmentation model generalizes to
other, similar classes (Supplementary Fig. S6), which drastically reduces the
amount of required labeled data.

So far, our analyses use only generated images, as current generative models
still cannot fully capture the diversity of real data. However, we assume that
many of the features that a GAN can generate are also relevant features encoded
in CNN classifiers. Note that despite this limitation, our approach can resolve
fine details (e.g., eyes). We expect the development of more accurate generative
models in the future will make applications of our approach to real images more
robust. Despite not yet being readily applicable to real images, we believe our
work introduces a novel type of approach to enable an unprecedented view of
the learned features represented in hidden layers of the CNNs.

Our analyses focus on highly similar classes that share general large-scale
features (e.g., general body shape) but differ along fine-grained features. It is
possible to train the linking network with more (diverse) classes. However, this
would shift the emphasis of the revealed features to a more macro-scale level.

In contrast to previous studies, we here analyze all individual dimensions
of the representation space and compute comprehensive summary statistics. To
the best of our knowledge, no benchmark has been proposed that can quantify
abstract representations encoded in single units of CNNs. We believe that our
method can open several avenues for studying how the representational geometry
(e.g. feature (dis-)entanglement or sparsity) affects a model’s performance and
its robustness to adversarial attacks. In the future, insights about the complete
representational space may inspire model architectures or training strategies that
constrain the representational geometry. Additionally, extending our approach
to other convolutional layers could reveal insights into features represented at
different hierarchies in the classifier. Also, using our method to find difficult-to-
classify images, as in [51], appears to be an interesting future direction.

6 Conclusion

We introduce a simple, yet effective tool to visualize and systematically ana-
lyze the representations learned in a classifier. Our approach allows us to study
abstract concepts encoded in individual units, as well as representations dis-
tributed over many units. The proposed automatic quantification pipeline pro-
vides a tool to interpret thousands of units simultaneously, demonstrating that
even single units can encode meaningful, partially disentangled features carrying
relevant class information, and revealing concepts that change across the deci-
sion boundary. We believe that our methods can provide novel insights into the
representation of abstract concepts in the hidden layers of classifiers and thereby
aid the introduction of such models in various real-world applications.
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