
SceneTeller: Language-to-3D Scene Generation
– Supplementary Material –

Başak Melis Öcal1⋆, Maxim Tatarchenko2, Sezer Karaoğlu1, and Theo Gevers1

1 UvA-Bosch Delta Lab, University of Amsterdam
2 Bosch Center for AI, Robert Bosch GmbH

In this supplementary material, we start by presenting details related to
the implementation (Sec. 1) and evaluation metrics (Sec. 2). Subsequently, the
details of the user study are provided in (Sec. 3). Lastly, additional visual
results of our method and further visual comparisons with text-to-3D scene
generation baselines are provided in (Sec. 4). Our project page is available at
https://sceneteller.github.io/.

1 Implementation Details

1.1 Language-driven 3D Layout Generation

In this section, we provide details of the prompt construction process. Samples
of individual prompt components are provided in Tab. 1.
Task specifications. Our task descriptions are adapted from [5] for the condi-
tional 3D layout generation task. Each description starts by the verbal definition
of the task, establishes a standard for the 3D layout format in CSS and then pro-
vides unit information for attributes. Constraints regarding undesired prediction
behaviors (e.g., predicting overlapping boxes or placing objects out of bounds)
are appended at the end of the task descriptions. As the common length unit of
CSS is pixels (px), we also employ pixels as the unit similar to [5]. However, we
actually interpret these values in meters.
Condition Format. The query conditions and the conditions of the support-
ing exemplars share the same format. Each starts by the room type and room
dimensions, and then followed by the textual description Y.

Our framework performs conditional generation based on the textual descrip-
tions instead of pure generation, aiming to provide more control to the end users
in designing their personalized rooms. By supporting textual descriptions with
explicit furniture positions and orientations, our framework empowers users to be
highly specific in their furniture placement preferences. If a different generation
behavior is desired from our layout generation module, conditions of in-context
exemplars can be adjusted accordingly.
Layout Format. Each bounding box within a 3D layout is encoded according
to the CSS style. Bounding box dimensions, center coordinates and orientation
angle are mapped to attributes length, width, height, left, top, depth, orientation,
while category name serves as the selector.
⋆ Correspondence to <b.m.ocal@uva.nl>

https://sceneteller.github.io/

2 B.M. Öcal et al.

LLM Hyperparameters. We use ChatCompletions API, which enables series
of dialogue exchanges between the user and the LLM, to query GPT-4 [1]. Max-
imum number of output tokens are set to 1024, while 8 supporting exemplars
are used for in-context learning.

Table 1: Samples of individual prompt components.

Task
Specifications

You are a 3D indoor scene layout planner. Instruction: Given a
textual description of an indoor scene layout, plan the 3D layout
of the scene. The generated 3D layout should follow the CSS style,
where each line starts with the furniture category and is followed
by the 3D size, absolute position and orientation.
Formally, each line should follow the template:
FURNITURE {length: ?px: width: ?px; height: ?px; left: ?px; top:
?px; depth: ?px; orientation: ?degrees;}
All values are in pixels but the orientation angle is in degrees.
The bounding boxes should not overlap or go beyond the layout
boundaries. Please refer to the examples below for the desired
format.

Condition
Format

Room type: bedroom
Room Size: max length: 2.854px, max width: 3.846px
Room description: At the heart of the room, a double bed is
positioned a tad nearer to the top-right wall, its orientation per-
pendicular but in reverse. Adjacent to the top-right corner, a
nightstand is placed, its orientation also perpendicular but in re-
verse. A wardrobe can be found centrally aligned with the bottom
wall, subtly closer to the right wall, with no rotation in its orien-
tation. Make it Starry Night Van Gogh painting style.

Layout
Format

double_bed {length: 1.813px; width: 1.882px; height: 1.077px; left:
1.772px; top: 2.044px; depth: 0.538px;orientation: -90 degrees;}
nightstand {length: 0.357px; width: 0.354px; height: 0.438px; left:
2.629px; top: 3.340px; depth: 0.219px;orientation: -90 degrees;}
wardrobe {length: 2.082px; width: 0.650px; height: 2.200px; left:
1.797px; top: 0.326px; depth: 1.099px;orientation: 0 degrees;}

1.2 3D Scene Stylization

BlenderProc is employed to render 250 images per assembled scene with 512
× 512 resolution. After relocating the center of each scene to the origin of the
coordinate system, we sample camera positions on the upper hemisphere at a
distance of 1.5r from the center where r is the diagonal length of the room, with
an elevation angle of 35 degrees. The 3DGS training is performed on one NVIDIA
RTX A6000 GPU, using the Splatfacto model from NeRFstudio [7]. Initially,
each scene is optimized for a maximum of 20k iterations. For editing the 3DGS
training images, we use InstructPix2Pix [2] as the diffusion model, with classifer
guidance scales sT = [3.5, 12.5] for the text and sI = 1.5 for the image. Similar

https://platform.openai.com/docs/api-reference/chat
https://github.com/DLR-RM/BlenderProc

SceneTeller: Language-to-3D Scene Generation 3

parameters are employed with Instruct-GS2GS [8] for the diffusion. The dataset
updates are performed every 2.5k iterations following Instruct-GS2GS [8].

For fine-grained object-level editing, our approach utilizes binary masks de-
rived from 2D segmentation masks and performs masked edits. While masks
are not required for scene-level edits in principle, we observed that refining the
3DGS scene without masks yields slightly blurry results. Therefore, for edit in-
structions targeting the entire scene, we combine the binary masks from all the
objects within the scene into a single foreground mask. Then, we train the 3DGS
as described in Sec 3.3. of the main paper, using this foreground mask.

2 Details of the Evaluation Metrics

Out-of-bound rate (↓). Out-of-bound rate indicates the percentage of scenes
where furniture extends beyond the floor plan boundary.
Precision (↑) and Recall (↑). We evaluate how closely the layout genera-
tion module follows the provided text prompt in terms of predicting the correct
object categories with the correct number of bounding boxes, by employing pre-
cision and recall as introduced in [5]. Considering Cpred = c′1, c

′
2,, c

′
M as the

set of M object categories mentioned in the predicted layout, x′
c′1
, x′

c′2
,, x′

c′m
denote the number of bounding boxes for each category accordingly. Similarly,
CGT = c1, c2,, cN and xc1 , xc2 ,, xcN represent the set of n object categories
and the number of bounding boxes for each category within the ground-truth
annotations. A value of 0 is assigned to x′

i, if a category ci that exists in CGT

but is not mentioned in Cpred, and vice versa. Then, precision is computed as
the percentage of predicted bounding boxes that exist in the ground-truth an-
notations:

precision =

∑N
k=1 min(xck , x

′
ck
)∑M

k=1 x
′
c′k

(1)

Recall is computed as the percentage of ground-truth bounding boxes that exist
in the predicted layouts:

recall =

∑N
k=1 min(xck , x

′
ck
)∑N

k=1 xck

(2)

Accuracy (↑). Accuracy is computed as the percentage of scenes for which the
number of bounding boxes and their corresponding categories exactly match the
ground-truth annotations.
Mean Intersection over Union (↑). The score evaluates the mean of inter-
section of the predicted bounding boxes and ground-truth bounding boxes over
their union. For every bounding box b′c′i,j

∈ Bpred within the predicted layout,
highest overlapping bounding box bc′i,H ∈ BGT with the same category in the
ground-truth layout is found. Then, IoU is computed as follows:

4 B.M. Öcal et al.

IoU =
|b′c′i,j ∩ bc′i,H |

|b′c′i,j ∪ bc′i,H |
(3)

If such a bounding box within the ground-truth cannot be found, an IoU score
of 0 is assigned to b′c′i,j

. Then, per-scene mean IoU is computed over all the
bounding boxes within the predicted layout. Finally, an average is reported for
all scenes.

3 Details of the User Study

We conducted a user study with 30 participants to quantitatively assess the text-
to-3D scene generation performance of our method. We compare our work with:
1) Set-the-scene [4] which represents scenes with compositional NeRFs initialized
by user-defined object proxies; 2) GSGEN [3], a 3DGS-based approach following
a two-stage pipeline for geometry optimization and appearance refinement; 3)
LucidDreamer [6] which employs render-refine-repeat paradigm by iteratively
warping and inpainting the previously generated image to create an initial point
cloud, which is then used for 3DGS scene training. As Set-the-scene [4] requires
an initial 3D layout as an input, we provide our generated 3D layouts to their
pipeline (Input type: L + T). Our method, GSGEN [3] and LucidDreamer [6]
only requires a text prompt as the input (Input type: T).

Participants are presented with 10 scenes, each accompanied by a textual
prompt describing its layout and style. We then request participants to rate
each scene on a scale from 1 to 5 (5 being the best) based on four criteria, with
detailed definitions provided in Tab. 2. To assist participants in comprehending
the directional cues given in the text prompts, the top/upper walls are high-
lighted with green arrows as a reference, if this information is available within
the generations.

The results presented in Tab. 2 of the main paper show that SceneTeller
outperforms the existing state-of-the-art 3D scene generation methods across all
the four criteria by a significant margin, confirming its efficacy on this challenging
task.

4 More Visual Results

We provide additional visual results of our method in Fig. 2, and further visual
comparisons with state-of-the-art text-to-3D scene generation methods in Fig. 3.
The provided textual descriptions in Fig. 2 and Fig. 3 specify the position and
orientation of objects within a canonical coordinate system, chosen to represent
the scene in a 2D bird’s-eye view perspective. This canonical coordinate system
is illustrated in Fig. 1. In our visual results, the top/upper walls within this
canonical system are indicated with arrows for your reference, if this information
is available within the generations.

SceneTeller: Language-to-3D Scene Generation 5

Table 2: The criteria used in the user study for evaluating 3D scene generation quality.
The definitions listed here are also provided to participants.

Criterion

Realism How realistic the appearance of the individual objects within
the scene? Do some colours and textures seem unrealistic?
Do the objects have distorted / blurred out surfaces or exhibit
comic or cartoon-like characteristics when compared to real-
world furniture?

Text Alignment How well the 3D scene follows the given layout description?
Do all the mentioned objects exist in the scene? Are objects
generated in described locations? Does the number of objects
align with the textual description?

Geometric Fidelity How accurate is the 3D geometry of the individual ob-
jects within the scene? Do the objects exhibit improper ob-
ject boundaries (wiggly boundaries, distortions at the bound-
aries)?

Compositional
Plausibility

How good is the 3D composition of the scene? Does the scene
involve overlapping objects or objects at improper locations
(e.g., flying objects)?

Fig. 1: Canonical coordinate system illustration. The canonical system is chosen to
represent the scene in a 2D bird’s-eye view perspective.

SceneTeller yields text-aligned and compositionally plausible scenes, allow-
ing end users to position and orient their furniture solely by interacting with
the system through text prompts. By facilitating realistic stylization via edit
instructions, SceneTeller presents a practical and flexible framework for crafting
personalized rooms.

6 B.M. Öcal et al.

Fig. 2: Qualitative results of our method. As the layout descriptions specify
the positions and orientations of objects within a canonical coordinate system, the
top/upper walls within this canonical system are indicated with arrows for your refer-
ence, if this information is available within the generations. SceneTeller is able to yield
realistic and high-quality 3D scenes.

SceneTeller: Language-to-3D Scene Generation 7

Fig. 3: Qualitative comparison with state-of-the-art text-to-3D scene gener-
ation methods. As the layout descriptions specify the positions and orientations of
objects within a canonical coordinate system, the top/upper walls within this canoni-
cal system are indicated with arrows for your reference, if this information is available
within the generations. Our method is able to generate high-quality scenes, with supe-
rior geometric fidelity and 3D consistency.

8 B.M. Öcal et al.

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv
preprint arXiv:2303.08774 (2023)

2. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image
editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 18392–18402 (2023)

3. Chen, Z., Wang, F., Liu, H.: Text-to-3d using gaussian splatting. arXiv preprint
arXiv:2309.16585 (2023)

4. Cohen-Bar, D., Richardson, E., Metzer, G., Giryes, R., Cohen-Or, D.: Set-the-scene:
Global-local training for generating controllable nerf scenes. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. pp.
2920–2929 (October 2023)

5. Feng, W., Zhu, W., Fu, T.j., Jampani, V., Akula, A., He, X., Basu, S., Wang, X.E.,
Wang, W.Y.: Layoutgpt: Compositional visual planning and generation with large
language models. Advances in Neural Information Processing Systems (NeurIPS)
36 (2024)

6. Liang, Y., Yang, X., Lin, J., Li, H., Xu, X., Chen, Y.: Luciddreamer: Towards high-
fidelity text-to-3d generation via interval score matching (2023)

7. Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., Wang, T., Kristoffersen,
A., Austin, J., Salahi, K., Ahuja, A., McAllister, D., Kanazawa, A.: Nerfstudio: A
modular framework for neural radiance field development. In: ACM SIGGRAPH
2023 Conference Proceedings. SIGGRAPH ’23 (2023)

8. Vachha, C., Haque, A.: Instruct-gs2gs: Editing 3d gaussian splats with instructions
(2024), https://instruct-gs2gs.github.io/

https://instruct-gs2gs.github.io/

	SceneTeller: Language-to-3D Scene Generation – Supplementary Material –

