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Abstract. Recent advancements in diffusion models have notably im-
proved the perceptual quality of generated images in text-to-image syn-
thesis tasks. However, diffusion models often struggle to produce im-
ages that accurately reflect the intended semantics of the associated text
prompts. We examine cross-attention layers in diffusion models and ob-
serve a propensity for these layers to disproportionately focus on certain
tokens during the generation process, thereby undermining semantic fi-
delity. To address the issue of dominant attention, we introduce atten-
tion regulation, a computation-efficient on-the-fly optimization approach
at inference time to align attention maps with the input text prompt.
Notably, our method requires no additional training or fine-tuning and
serves as a plug-in module on a model. Hence, the generation capacity
of the original model is fully preserved. We compare our approach with
alternative approaches across various datasets, evaluation metrics, and
diffusion models. Experiment results show that our method consistently
outperforms other baselines, yielding images that more faithfully reflect
the desired concepts with reduced computation overhead. Code is avail-
able at https://github.com/YaNgZhAnG-V5/attention_regulation.

1 Introduction

Diffusion models introduce a significant paradigm shift in the field of genera-
tive models [8, 27, 30], with their application becoming increasingly widespread.
Their adoption of diffusion models is largely attributed to their capability to
generate detailed, high-resolution, and diverse outputs across a broad spectrum
of domains. Moreover, diffusion models excel in leveraging conditioned inputs for
conditional generation. This adaptability to various forms of conditions, whether
textual or visual, further extends the application of diffusion models beyond
mere image generation, encompassing tasks such as text-to-video synthesis [29],
super-resolution [14], image-to-image translation [23], and image inpainting [17].

Although diffusion models are adept at producing images of high perceptual
quality, they face challenges in following specific conditions for image generation.
This limitation is particularly pronounced in text-to-image (T2I) synthesis as
compared to tasks where generation relies on more descriptive conditions, such
as segmentation masks or partial images used in inpainting. Previous studies
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Fig. 1: Attention regulation effectively improves semantics alignment with prompts by
modifying the cross-attention maps at inference time without fine-tuning the model.
Moreover, attention regulation requires only additional information on target tokens
and achieves inference time comparable to that of the original model. Attention regula-
tion serves as a plug-in module and can be disabled anytime to use the original model.

have observed that diffusion models can ignore some tokens in the input prompt
during the generation process, a problem known as “catastrophic neglect” [1]
and “missing objects” [3]. Additionally, these models may overly focus on certain
aspects of the prompt, resulting in generation results that are excessively similar
to data encountered during the training phase. Prior works proposed to improve
the stability of diffusion models by learning to use additional input as conditions,
such as sketches or poses as visual cues, or additional instructions that the model
should follow. However, these approaches may require additional training or fine-
tuning the model. In addition, these methods demand more inputs, potentially
restricting their usability in scenarios where acquiring additional conditional
information is challenging.

In this work, we introduce attention regulation, a method that modifies at-
tention maps within cross-attention layers during the reverse diffusion process
to better align attention maps with desired properties. We formulate the de-
sired regulation outcome through a constrained optimization problem. The op-
timization aims to enhance the attention of all target tokens while ensuring that
modifications to the attention maps remain minimal and essential. Our atten-
tion regulation technique obviates the need for additional training or fine-tuning,
enabling straightforward integration with existing trained models. Furthermore,
it selectively targets a subset of cross-attention layers for optimization, thereby
reducing computational demands and minimizing inference time. Experimental
outcomes demonstrate the superior efficacy of our attention regulation approach,
significantly improving the semantic coherence of generated images with com-
parably less computational overhead during inference against baseline methods.
Examples of Attention regulation is shown in Figure 1.

Contribution: a) We propose an on-the-fly attention edit method on T2I
diffusion models to improve their textual following ability. We formulate the
attention edit problem as a constrained optimization problem on attention maps
and show how it can be solved by gradient-based optimization. b) We propose
an evaluation metric based on a detection model while evaluating our proposal
with existing evaluation metrics. Evaluation across various diffusion models and
datasets demonstrates the effectiveness of our method.
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2 Related Works

Diffusion models simulate the process where noise gradually obscures source data
until it becomes entirely noisy [26]. The goal is to learn the reverse process, al-
lowing a model to recover data from noisy inputs. Diffusion models can either
predict less noisy data at each step or deduce the noise, then denoise data us-
ing Langevin dynamics. [8,24]. Earlier diffusion models reconstruct images from
noise directly, a computation-intensive process that limits reconstruction speed.
Instead, Rombach et al. [20] processing in a lower-dimensional space, making
latent diffusion models significantly faster and enabling training on extensive
datasets like LAION. [25]. Prediction of noise or previous states in the reverse
process usually uses a U-Net [21]. To enable conditional generation for diffu-
sion models, cross-attention modules [28] are embedded into the U-Net so that
generation takes the condition into account [20]. Other guidance techniques are
proposed to improve the conditional generation performance [2, 9, 27].

To gain more control over diffusion models, various approaches propose to
edit trained models through fine-tuning [22] [10]. Custom diffusion [13] proposes
to fine-tune a diffusion model to include customized objects and achieve image
composition including customized objects. Concept Erasing [5] and Concept Ab-
lation [12] work by removing target concepts given by users. Besides fine-tuning
models to enhance control, alternative methods modify the diffusion process
without fine-tuning to guide the model generation. Null Text Inversion [4] op-
timizes a text embedding to elicit specific behaviors from the diffusion model,
utilizing this embedding to steer the generation process. Prompt-to-Prompt [6]
edits the content of a generated image by interchanging attention maps of dif-
ferent prompts. Composable Diffusion [16] assembles multiple diffusion models,
utilizing each of them to model an image component. Syntax-Guided Genera-
tion (SynGen) [19] conducts syntactic analysis of prompts to identify entities and
their relationships, then utilizes a loss function to encourage the cross-attention
maps to agree with the linguistic binding. Dense Diffusion [11] edits an image
by modifying the attention map of a given target object using a segmentation
mask, which is markedly different from our approach as our method does not
require a predefined segmentation mask. Attend-and-Excite [1] addresses catas-
trophic neglect, a tendency to neglect information from prompts during image
generation. The difference between Attend-and-Excite and our attention regula-
tion approach is that they optimize the latent variable based on a loss function
defined over attention maps, while ours directly regulates attention maps.

3 Method

3.1 Preliminaries

Diffusion models. Diffusion models constitute a class of generative models
that simulate the physical process of diffusion. In a diffusion process, Gaussian
noise is incrementally introduced to the original data across multiple steps, trans-
forming the data samples into pure noise. The objective of diffusion models is to
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learn the reverse diffusion process that converts noise back into data conforming
to the target data distribution. This reverse process can be effectively modeled
by learning to predict the noise at a specific diffusion step, denoted as ϵ̂θ(xt, t).
The loss function is thus defined as

L =

T∑
t=1

Ex0,ϵ∼N (µ,σ2),t

[
∥ϵ− ϵ̂θ(xt, t)∥2

]
, (1)

where xt represents a noisy version of the data x, and t is uniformly sampled
from {1, . . . , T}. To improve the sample efficiency of diffusion models, one can
transform the data into a low-dimensional hidden space using a Variational Au-
toencoder (VAE). Given an encoding model E(·), the hidden representation z
of the data x is obtained as z = E(x). In addition, a diffusion model can learn
conditional distributions P (x|c) using a conditional denoising model. A more
comprehensive loss function, incorporating initial conditions and latent repre-
sentation, is

L =

T∑
t=1

EE(x0),c,ϵ∼N (µ,σ2),t

[
∥ϵ− ϵ̂θ(zt, t, c)∥2

]
. (2)

Cross-attention layers in diffusion models. The previous section dis-
cussed the conditional generation ability of diffusion models. Conditional infor-
mation is incorporated into diffusion models through cross-attention layers. A
cross-attention layer typically has many attention heads. The functional repre-
sentation of an attention head, f(zt, c), which integrates the hidden representa-
tion zt ∈ RM×dz and the condition c contains N tokens, is defined as

f(zt, c) = Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
· V, (3)

where Q = WQ · zt, K = WK · τθ(c), and V = WV · τθ(c). In this formulation,
the model τθ transforms the condition c into a latent conditional representation
τθ(c) ∈ RN×dc , then projects τθ(c) and zt into key K ∈ RN×d, query Q ∈ RM×d,
and value V ∈ RN×d through weights WQ ∈ Rd×dz , WK ∈ Rd×dc , and WV ∈
Rd×dc . Lastly, K, Q, and V are processed by the attention mechanism. We can
extract an attention map A as

A = softmax
(
QKT

√
dk

)
∈ RM×N . (4)

Attention map A provides the correlation in terms of attention scores between
the hidden representation and the condition. An attention map A can be further
processed by unraveling the first dimension to be N two-dimensional maps, where
each map shows the attention of one text token on the image.

3.2 Semantic Violation by Attention Mismatch

In this section, we investigate why diffusion models fail to adhere to the se-
mantics of a given prompt. As outlined in Section 3.1, cross-attention layers are
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Image Attention Statistics at Step 0 Attention Statistics at Step 24

Fig. 2: Illustration of attention dominance. The violin plots display the attention statis-
tics for one cross-attention layer across two image samples, both prompted by "A
painting of an elephant with glasses." At the initial diffusion step 0 (middle column),
the attention patterns are similar for both samples. By step 24 (third column), a sig-
nificant divergence is evident. For the successful sample (bottom row), the attention
allocated to "elephant" and "glasses" is approximately equal, suggesting a balanced
representation. In contrast, for the sample that fails to include glasses (top row), at-
tention disproportionately favors the token "elephant," marginalizing other relevant
tokens (red arrow). More results are in the Appendix A.1.

responsible for integrating conditional information such as prompt embeddings.
Therefore, our analysis focuses on the functioning of these cross-attention layers
during the reverse diffusion process. Figure 2 illustrates the attention statistics
for two samples generated in response to the same prompt, "A painting of an ele-
phant with glasses", albeit with differing initial noises. The implementation and
visualization details of this experiment are provided in Appendix A.1. Notably,
one sample successfully includes glasses in the image, while the other sample fails
to generate glasses. The attention statistics for both samples initially exhibit a
similar pattern during the early stages of the reverse diffusion process. However,
at diffusion step 24, the attention statistics for the unsuccessful sample (the
one lacking glasses) reveal a predominance of the "elephant" token in attention
values. Given that this sample ultimately fails to include glasses, we conjecture
that this disproportionate focus detracts from the representation of other rele-
vant tokens, thereby diminishing the semantic integrity of the generated image.
In addition, dominance attention usually appears during the generation process
instead of at the initial states of the reverse diffusion. This pattern of domi-
nant attention is observed across multiple cross-attention layers and throughout
various diffusion steps. Furthermore, such instances of dominating attention,
particularly in samples with semantically incorrect outcomes, are a common oc-
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currence. For generated samples with correct textual semantics, the attention is
more evenly distributed across relevant tokens. Additional examples are provided
in Appendix A.1 as a more comprehensive demonstration. Conditional diffusion
models usually apply guidance, we also provide additional results in Appendix
A.3 that using a larger guidance scale is not sufficient to solve the semantic
violation issue.

To mitigate this effect of dominant attention during the reverse diffusion
process, we propose attention regulation in the subsequent section. Attention
regulation employs an intuitive way to improve image semantics based on our
observation on attention maps: we should mitigate dominating attention and
promote attention of all relevant tokens.

3.3 Attention Edit as Constrained Optimization

Optimization objective. In Section 3.2, we show that attention mismatch
during the reverse diffusion process causes the generated images to deviate from
the intended semantics. To improve the semantic fidelity of generated images,
we introduce attention regulation, a method that applies on-the-fly adjustments
to attention maps at inference time. We formulate this attention edit process
as a constrained optimization problem based on the notation in Section 3.1.
In our attention regulation setting, we require a set of target token indexes
T = {t1, ..., tn} as additional input. We want to ensure sufficient attention on
target tokens during the reverse diffusion process, such that the final image
contains objects representing target tokens. Formally, for a given set of original
attention maps A ∈ RM×N prior to adjustment, and an error function E(·, ·) that
quantifies the deviation of target attention maps from desired characteristics, the
optimally edited attention map A∗ is defined as follows:

A∗ = argmin
A′

E(A′, T ) (5)

subject to ||A′ −A||2 ≤ δ, (6)

where δ represents a threshold for the allowable deviation from the original
attention maps. This constrained optimization problem can be converted to an
unconstrained optimization problem by introducing a Lagrange multiplier β > 0
for the inequality constraint. The resulting optimization problem, in terms of
the Lagrangian f(A, β), becomes:

A∗ = argmin
A′,β

f(A′, β, T ) = E(A′, T ) + β · (||A′ −A||2 − δ). (7)

We further set β as a non-negative hyperparameter and omit all constants in
the equation, this yields:

A∗ = argmin
A′

L(A′, T ) = E(A′, T ) + β · ||A′ −A||2. (8)

Our optimization aims to mitigate attention dominance and encourage the at-
tention maps of all target tokens to have sufficiently high attention values. There-
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fore, we define the error function E(·) as:

E(A′, T ) = 1

|T |
∑
t∈T

(ϕ(A′
t, 0.9)− 0.9)2 + α · 1

|T |
∑
t∈T

∑
a∈A′

t

a− µ ·M

2

, (9)

where A′
t ∈ RM is a 2D attention map of a target token, ϕ(A′

t, 0.9) extracts
the 90th-quantile of all the value in A′

t, and
∑

a∈A′
t
a calculates the sum of all

elements in A′
t. The first term in E(A′, T ) aims to ensure that high attention

regions in the attention maps of each target token reach a specified threshold,
ideally so that the 90th quantile of the target attention map equals 0.9. The
intuition behind the second term of E(A′, T ) is to ensure that there is an equal
µ proportion of high attention region in the attention map of each target token.
This formulation of E(A′, T ) results in a differentiable loss function L(A′, T ),
allowing for gradient-based optimization to find A∗. The subsequent sections will
elaborate on the methodology to parameterize A′ and optimization details.

Parameterize attention maps. Given a query matrix Q and a key matrix
K extracted from a cross-attention layer, we explicitly parameterize the edited
attention maps A′ as

A′ = A′(S) = softmax

(
QKT + S√

d

)
, (10)

where S is an additive adjustment to the query-key-product QKT from the
cross-attention layer. This parameterization allows for effective modification of
the attention scores while preserving their normalization property, wherein the
attention scores across the token dimension sum up to one. As S ∈ RM×N , we
shall further parameterize S = (Sk)1≤k≤N .

In the following discussion, we shall restrict the scope to adjusting a single
attention map. That adjustment is denoted as Sk. For k ̸∈ T , Sk = 0 as we
restrict the edit only to the target tokens. For k ∈ T , to minimize artifacts dur-
ing editing and expedite the optimization process, we aim for Sk to be smooth
and parameterized by another variable with fewer trainable parameters. Con-
sequently, we further parameterized Sk using a weight matrix θ ∈ Rr×r with
r = w

2σ and w2 = M . Sk is then explicitly defined as

Sk = Sk(θ, σ) =

r∑
p=1

r∑
q=1

θp,q ·G(2σp, 2σq, σ), (11)

where matrix G(x0, y0, σ) ∈ Rw×w represents a 2D smooth Gaussian kernel,
expressed by

G(x0, y0, σ) = exp

(
− (i− y0)

2 + (j − x0)
2

2σ2

)
1≤i,j≤w

. (12)

Parameter σ is chosen such that 2σ divides w and is constant across all k. This
approach shifts the focus of optimization from the entire attention map to merely
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Fig. 3: Visualization of the optimization outcome. The given prompt is "A bedroom
with a book on the bed". By creating regions with high attention values for the target
tokens while maintaining the consistency of the attention maps across diffusion steps,
the desired targets are successfully generated.

learning a weight matrix θ for the smooth additive variable Sk, described by

A′
k ← A′

k(Sk(θ − η · ∇θL)), (13)

where η denotes the learning rate. With this parameterization of attention maps,
we have only Mn

4σ2 learnable parameters instead of Mn learnable parameters. This
strategy ensures a targeted and efficient adjustment of attention maps, thereby
enhancing semantic fidelity in generated images with minimal computational
overhead. Figure 3 shows a visualization of the target attention maps after op-
timization at specific diffusion steps.

Reduce distortion in generation. While our optimization objective aims
to minimize edits on attention maps, the extent of its regulation effect is strongly
influenced by the hyperparameter β. In practice, β is usually suboptimal, lead-
ing to overediting of the attention maps. Such overediting in attention maps can
introduce distortions into the generated images. We identify two primary causes
of distortion during the generation process with attention regulation. First, op-
timization may alter different spatial regions at each diffusion time step. These
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spatially inconsistent attention maps across diffusion steps can contribute to dis-
tortion in generated images. Second, substantial edits during the later stages of
the reverse diffusion process can adversely affect the generation, as later reverse
diffusion steps are responsible for adding fine-grained visual details. To address
these two identified issues, we introduce the following attention map edit scheme:

AEMA ← κ ·AEMA + (1− κ) ·A∗, (14)

A← λt · 1t<tthres(t) ·AEMA. (15)

Rather than directly applying the optimized result, we calculate an Exponential
Moving Average (EMA) of the optimized result, AEMA, as an additional consis-
tency enforcement. Moreover, we apply a decay to the edit variable as reverse
diffusion progresses, gradually decreasing the impact of the edit, aligning with
approaches in prior works [11] that also gradually reduce the amount of edit.
Lastly, we stop the edit beyond a certain diffusion time step threshold.

Efficient attention regulation. We selectively apply attention regulation
only on a subset of all cross-attention layers. As T2I diffusion models usually
apply a U-Net structure for noise prediction, we choose cross-attention layers
in the last down-sampling layers and the first up-sampling layers in the U-Net
for editing. This targeted approach allows us to concentrate our editing efforts
on layers that have a significant impact on the model’s ability to incorporate
and refine semantic details, optimizing the balance between fidelity to the text
prompt and efficiency. Section 4.3 shows that this design choice achieves a good
trade-off between efficiency and performance.

4 Experiments

4.1 Experiment Setup

Baselines: We restrict our comparison against four other training-free methods
proposed to improve semantic fidelity: Composable diffusion, Syntax Generation,
Dense Diffusion and Attend-And-Excite.

Evaluation Metrics: We apply five metrics for evaluation. For Semantic
Alignment evaluation, we use CLIP score (denoted as CLIP) to compare the
similarity between generated images and the text prompt. A higher CLIP score
denotes higher similarity between prompt and generated image pairs. Besides
CLIP, we introduce another alignment evaluation, an object detection evalua-
tion that detects target objects using the Owl v2 [18] open-vocabulary object
detection model and measures the detection success rate (denoted as Det.Rate).
The detection success rate is the proportion of images that all target objects
in the prompt can be successfully detected in the image. A higher detection
success rate also implies a better alignment between prompts and generated
images. Moreover, we evaluate the perceptual similarity of the original image
and the editing images through LPIPS Score (denoted as LPIPS) [31]. A lower
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Fig. 4: A qualitative comparison of the images generated by previous approaches and
our approach. More samples in Appendix A.4.

LPIPS score means fewer edits during the generation. We also evaluate the gen-
erative quality of our image using Fréchet Inception Distance Score (denoted
as FID) [7], which quantifies the discrepancy between the distribution of real
images and that of the generated images. Lastly, we evaluate the efficiency by
measuring the average inference time of generating one image and report the
computational overhead (denoted as Comp. Overhead) in percentage. The com-
putational overhead is calculated as T−T0

T0
, where T is the inference time with

edits and T0 is the inference time of a clean diffusion model.
Datasets: We include three datasets for our quantitative evaluation. One is

a subset of the MS-COCO dataset (denoted as COCO Dataset) [15] proposed
by the authors of [11]. This dataset slightly modifies captions from MS-COCO
dataset with added attribute text for target words and uses modified captions
as prompts. For this dataset, we can apply all baseline methods. The second
dataset is a benchmark that analyzes semantic issues, created by the authors
of Attend-And-Excite (denoted as A&E Dataset) [1]. For A&E dataset, Dense
Diffusion is not applicable, as it requires segmentation maps of targets as an
additional input condition besides prompt texts. An accurate estimation of the
inception distance for FID evaluation necessitates a substantial volume of data.
Thus, we utilize a third distinct dataset, a subset of the MS COCO dataset
comprising 3,000 images and 3,000 corresponding captions as prompts (denoted
as FID Dataset).
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Table 1: Evaluation of different methods on Stable Diffusion 2. The best results are
shown in bold. DenseDiffusion is not applicable to the A&E dataset due to the lack of
segmentation masks.

Methods COCO Dataset A&E Dataset Comp.

CLIP↑ Det.Rate↑ LPIPS↓ CLIP↑ Det.Rate↑ LPIPS↓ Overhead↓

Original 0.328 55.9% – 0.324 46.7% – –

ComposableDiffusion 0.301 27.0% 0.606 0.307 19.4% 0.598 119.5%

SyntaxGeneration 0.327 63.8% 0.452 0.326 61.4% 0.423 378.0%

DenseDiffusion 0.332 64.0% 0.729 – – – 79.3%

AttendAndExcite 0.330 64.5% 0.393 0.331 60.8% 0.508 414.6%

Ours 0.337 72.5% 0.508 0.337 66.2% 0.666 48.8%

Diffusion models: We evaluate on several diffusion models that perform
text-to-image synthesis. Specifically, we include four opensource diffusion mod-
els: Stable Diffusion 1.4, 1.5, 2, and 2.1. In our experiment, we generate 10 images
for each prompt with the default setting of each diffusion model.

Hyperparameter search: We perform a hyperparameter search to find the
optimal hyperparameters of our method. Details and results of the hyperparam-
eter search are in Section 4.3. For our method, we apply attention edit on the
last down-sampling layer and the first up-sampling layer in U-Net (SD models
have 3 down-sampling layers and 3 upsampling layers). We use β = 0.1 and stop
edits after the 25th diffusion step.

Hardware: We perform T2I generation tasks on A4000 GPUs. The inference
time for generating one image on SD models is around 4 seconds.

4.2 Quantitative Comparison

Figure 4 presents sampled generation outcomes from various methods, utilizing
Stable Diffusion 2 for generation. Figure 4 demonstrates that attention regula-
tion effectively enhances the semantic following ability of Stable Diffusion 2. To
illustrate, in the left-most example of Figure 4, our method reliably produces
all specified target objects (dog and frisbee), while other baseline methods fail
to include all target objects. We quantitatively measure the performance of all
methods on two datasets, employing three metrics on prompt adherence, image
quality in terms of generating target objects, and image similarity to images
generated by the original model. Table 1 shows quantitative evaluation results
on Stable Diffusion 2. On both datasets, our method outperforms all baselines in
terms of CLIP score and detection success rate. The evaluation results confirm
that our attention regulation approach yields images that more accurately reflect
the given prompts. Regarding computational efficiency, our method entails an
additional 48% computation time, markedly lower than the increase associated
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Table 2: FID score evaluation. The best result is shown in bold.

Methods Original Compo.Diff. SyntaxGen. Attend&Excite Ours

FID Score↓ 42.72 77.43 40.71 42.56 41.79

Table 3: CLIP score evaluation of different methods across diffusion models. The best
results are shown in bold. We omit the result of other evaluation metrics for other
diffusion models and present those results in Appendix A.2.

Methods COCO Dataset A&E Dataset

SD1.4 SD1.5 SD2 SD2.1 SD1.4 SD1.5 SD2 SD2.1

Original 0.323 0.324 0.328 0.323 0.314 0.314 0.324 0.327
ComposableDiffusion 0.306 0.305 0.301 0.305 0.308 0.308 0.307 0.296

SyntaxGeneration 0.325 0.325 0.327 0.324 0.323 0.323 0.326 0.326
DenseDiffusion 0.327 0.330 0.332 0.330 – – – –

AttendAndExcite 0.322 0.324 0.330 0.329 0.319 0.320 0.331 0.329
Ours 0.331 0.332 0.337 0.335 0.331 0.331 0.337 0.337

with other baseline methods. Furthermore, our approach introduces moderate
adjustments, as indicated by an LPIPS score that is comparable to those of the
baseline methods.

To evaluate the FID score of our attention regulation approach, we generate
a single image for each prompt in our FID Dataset. Table 2 shows the FID score
for our approach and other baselines. Our method achieves the second-lowest
FID score, signifying superior generation quality relative to the other baselines.

We further explore the versatility of attention regulation across diverse diffu-
sion models. Table 3 showcases additional experimental results, comparing our
method with other baselines across different diffusion models. The CLIP score
for our approach consistently outperforms those of the baselines, suggesting that
attention regulation maintains its effectiveness across a variety of models. Due
to the space constraints in the main text, we only report CLIP scores across
multiple models. We present evaluation results of other metrics across multiple
models in Appendix A.2.

4.3 Ablation Study

In this subsection, we delve into the impact of three critical hyperparameters
on our attention regulation mechanism: the selection of attention layers, the
timing of attention regulation within the diffusion steps, and the value of the β
regularization term.

Our analysis begins with the influence of integrating additional cross-attention
layers. By methodically modifying more pairs of up and down block layers near
the bottleneck layer in groups of one, two, and three, and assessing both down
and up block layers individually, the best performance in CLIP similarity score
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(a) Layer Ablation (b) Step Ablation (c) Beta Ablation

Fig. 5: Ablation study on layers (5a), diffusion steps (5b) to perform attention regu-
lation and the β regularisation term (5c). Attention regulation performance increases
initially by adding more layers and diffusion steps for editing, but saturates when reach-
ing edit layer 4 and edit steps 25. The performance increases as β increases until 0.1.

Fig. 6: Example of attention regulation results with varying layers. The examples show
that effective results can be achieved with just applying attention regulation on two
cross-attention layers. More samples in Appendix A.5.

is achieved with four layers, as illustrated in Figure 5a. However, to minimize
complexity without significantly sacrificing performance, we opted for editing
two layers, a decision supported by visual comparisons in Figure 6.

In addition, we explore how attention regulation at various diffusion steps
affects outcomes by initiating regulation at the start and ceasing at different
steps. Our observations, shown in Figure 5b, reveal a performance plateau at
step 25, after which the regulation’s effectiveness decreases as the data becomes
clearer. Figure 7 illustrates the visual effects of stopping at different steps, leading
to our decision to halt attention regulation at step 25.

Lastly, we adjust the β regularization term to find a balance between edit effi-
cacy and alterations to the original attention map. Increasing β to 0.1 enhanced
performance marginally, but any higher value caused a significant decline, as
depicted in Figure 5c. Thus, we establish β at 0.1 for optimal results. Visual
examples to show the effects of varying β are provided in Appendix A.5.
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Fig. 7: Example of attention regulation with varying steps. Visually, attention regula-
tion is highly effective at step 25. More samples in Appendix A.5.

Houseplant + Apple Goldfish + Apple Spider + Glasses Helicopter + Owl

Fig. 8: Failure cases of attention regulation. The left figures show the case of features
not fit with the context. The right figures show the case of feature fusion.

4.4 Limitations

Figure 8 shows two types of failure. Left images show that attention regulation
may generate images distinct from human knowledge, as here the logo of Apple
is incorrectly considered more appropriate by the model. For the two images on
the right, SD2 fuses both concepts into one object. We conjecture both cases
to be rooted in the features learned from diffusion models being different from
human understanding.

5 Conclusion

In this work, we study a prevalent issue in diffusion models equipped with cross-
attention modules: a single token often receives disproportionately high atten-
tion values during the generation process. To address the issue of dominating
attention, we propose attention regulation, which modifies attention maps at
inference time to enhance the semantic fidelity of generated images. We evaluate
our method against baseline works across a wide spectrum and demonstrate the
superior performance of our method in computation efficiency and adherence to
prompts. Our method shows promise to be portable to existing diffusion models
to enhance text conditioning without further modification on the model.
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