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A Details of Our Method CLIPtrase

This section primarily supplements some method details and consists of the
following three parts: 1). further analysis of global patches, 2). efficient variants
for effective semantic correlation recovery calculation, and 3). reasons for using
mask classification.

A.1 More Explanation of Global Patch

Observation. As mentioned in the main text, the [CLS] token does not directly
weight all patches of the entire image through an attention weight map to obtain
the final result as we might imagine. Instead, the [CLS] token interacts with the
global patches to serve as a stepping stone for completing the process. Global
patches: When the [CLS] token extracts overall information from the image,
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there are several global patches that have high attention weights for any local
patch in the image, providing a global view. The [CLS] token does not directly
interact with all patches but focuses on these global patches to obtain image-level
information, while disregarding the weights of other local patches.

Furthermore, through our observations, we find that this phenomenon is
commonly observed from the 6-th to the 11-th layers of the CLIP ViT, while
with some alleviation in the final layer strangely.

Analysis. Since the CLIP model is trained solely on a contrastive learning
objective function and there are no additional constraints on the [CLS] token,
we believe that this phenomenon is spontaneously formed by the model during
the training process. We explore why CLIP spontaneously forms global patches
by considering the benefits they provide to the CLIP. By starting from the
advantages offered by such global patches, we can gain insights into the reasons
behind their spontaneous formation in the model.

We think there are two main reasons:
First of all, one of the reasons is the redundancy of image information. From
the perspective of information content, even if they describe the same object,
the information content of images is much higher than that of text. And in the
image, in addition to the main object described, most areas are other objects and
background, which are redundant for text category features. This aspect causes
[CLS] token to face a lot of redundant information when extracting image-level
feature representation.

The emergence of global patches can effectively alleviate this phenomenon.
The global patch itself can act as a filter, allowing the [CLS] token to learn
features that better match the texts.

This can be seen from the semantic correlation visualization of images in
Section D. Often, for images with large-area backgrounds, such as large-area sky,
ocean, etc., the more global patches there are. This is similar to the conclusion
in the StreamingLLM [51] model: Xiao et al. believe that the first token in
GPT acts as a "trash can", causing redundant information to be placed in this
token. Our global patch here also plays a similar role and helps filter redundant
information.

The second point is due to the training trend of the model. Just like general
models tend to learn sparse features, CLIP’s [CLS] token also has this tendency
when faced with complex patch tokens. A large number of patch tokens increases
the difficulty of learning of [CLS] token. The emergence of global patches can
make the patch interaction process also show a sparse trend, and [CLS] token
only interacts with global patches. This greatly reduces the learning difficulty of
[CLS] token.

Effects. Although the emergence of this global patch has several benefits we
mentioned above, it also greatly destroys the semantic correlation between local
patches.

Global patches maintain high weighted attention with all local patches. How-
ever, due to the existence of softmax, the high weights with the global patch
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gradually squeeze the correlation weights between the original patches, caus-
ing the local patches to lose their ability to pay attention to adjacent or same
semantic patches.

In the final layer of CLIP-ViT, due to the objective function aligning the
[CLS] token with the text, certain semantic information is fed back from the
[CLS] token to the patches across the entire image, leading to a partial recovery
of semantic relevance among local patches. However, due to the influence of
the global patches mentioned earlier, this recovery is limited and cannot fully
counteract the suppression of original semantic relevance by the global patches
in the attention matrix.

Therefore, the presence of global patches leads to a lack of semantic relevance
among local patches, which is the main reason why CLIP is not well-suited for
dense feature tasks such as semantic segmentation.

A.2 Semantic Correlation Computing

In the original computation of semantic correlation recovery, we perform self-
correlation separately for each branch and each head. We then calculate the
mean to obtain a more stable measure of semantic relevance:

qi = σi,q(x), ki = σi,k(x), vi = σi,v(x), i ∈ [0, H − 1] (1)

wi,q = γ(qi, qi), wi,k = γ(ki,ki),wi,v = γ(vi,vi) (2)

w =
1

3H

H−1∑
i=0

(wi,q +wi,k +wi,v) (3)

where σ, γ is the linear layer and semantic correlation we mentioned in
the main text, respectively. However, performing separate computations on each
head can reduce computational efficiency. Therefore, a simple approach to stream-
line this calculation process is to concatenate the outputs from each head:

qi = σi,q(x), ki = σi,k(x), vi = σi,v(x), i ∈ [0, H − 1] (4)

q = ϕ(q0, ..., qH−1), k = ϕ(k0, ...,kH−1), v = ϕ(v0, ...,vH−1) (5)

w =
1

3
(γ(q, q) + γ(k, k) + γ(v, v)) (6)

where ϕ is the operation of concatenation. Such a replacement solution re-
duces the computational burden and has almost no impact on performance.
However, when explaining ideas, we prefer to use the calculation method in the
main text because it is more intuitive.
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Table 1: SCR rationality validation.

input=224, mIoU VOC ADE COCO PC Avg.
w/o. SCR 67.77 3.01 5.40 10.85 21.76
< xi, xi > 62.69 11.55 16.40 25.11 28.94
< xi, xj > 75.61 15.58 21.39 32.13 36.18
COS(xi, xj) 77.58 15.79 21.82 32.55 36.94

COS(xi, xj), j ∈ GT 77.71 16.50 22.57 33.89 37.67
CLIPtrase (inner product SCR) 63.55 7.49 12.64 19.94 25.91

CLIPtrase (Cosine SCR)(Ours) 80.95 16.35 22.84 33.83 38.50

Rationale of semantic correlation recovery. In Table 1, we gradually re-
fine the scope of attention to estimate an increase in the degree of semantic
correlation restoration (SCR): 1): without SCR; 2): self attention: focus on own
patches, 3): normal attention: by inner product or Cosine, 4):attention within
ground truth regions. It is evident that global patches significantly disrupt se-
mantic correlation from Figure 1,2,4 of the paper. As the region of SCR becomes
more precise, the segmentation performance gradually improves in Table 1, which
indicates a diminishing influence of global patch. We demonstrate that as the de-
gree of SCR increases, the segmentation performance improves. This serves as
the proof that global patch is one of the reasons causing limited segmentation.
Furthermore, both Cosine similarity and inner product yield similar results from
row 3,4 in the Table 1. However, the unbounded range from inner product has a
negative impact (lines 209-215, 387-392 in the paper) on subsequent clustering
module, which shown in last two rows of Table 1. Therefore, we select the Cosine
similarity to implement the SCR.

A.3 Mask Classification

In the main paper, our clustering design is mainly to adaptively obtain the mask
corresponding to each object, and then let all pixels in the mask jointly determine
the category of this area. So there may be a question here: why not do patch-text
prediction directly?

We explain in detail the reasons for this operation:
First, such a clustering operation can form masks of the same semantic areas

through the common features of the semantic similarity matrix. This idea of
mask and joint decision-making make most of the correct predictions in this
semantic area to improve some noise predictions. Through the performance and
ablation experiments in the main paper we are able to prove the effectiveness of
this approach and can effectively improve the prediction noise in the image.

In addition, this approach is closer to the current methods that requires
training based on MaskFormer [7], which lays the foundation for us to apply it
to the models those require training.

In fact, a more consistent approach with mask-based training models such
as [19, 53] is to use the mask obtained by clustering to perform mask pooling
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Table 2: Our approach combined with MaskCLIP or DINOv2.

input=224, mIoU VOC ADE COCO PC Avg.

Ours + DINOv2 80.23 15.79 21.82 32.55 37.59

CLIPtrase(Ours) 80.95 16.35 22.84 33.83 38.50

on the CLIP features, and use the masks as the attention bias to generate its
corresponding [CLS] token for each mask. However, since this method requires
separately designing and training some layers for attention bias, which violates
our original intention of directly adapting CLIP to the semantic segmentation
task, it was abandoned.

In addition, to further demonstrate the effectiveness of our self-correlation
and the rationale behind using masks, we compare the results obtained by using
DINO [2] for masking. Table 2 presents a detailed performance comparison, and
it can be observed that our method exhibits similar performance to the DINO
model during the masking process after undergoing self-correlation recovery.

B More Experiments

B.1 Experiment Details

In this section, we present further details and configurations utilized in our ex-
periments.

Environment. The environment we use is: CUDA version: 11.3, PyTorch:
1.12.1, GPU: NVIDIA RTX 3090*1, CLIP: CLIP-B/16, local implementation.

Data Proprocessing. The data preprocessing and data enhancement solu-
tions in this paper are consistent with CLIP preprocessing and do not add any
additional operations. We maintain the order of operations of resize, crop, and
normalize. The mean and variance of normalizing on the image are:[0.48, 0.46,
0.41], [0.27, 0.26, 0.28] (two decimal places).

Hyper-parameters. Our image sizes in experiments are 224, 336. In the sub-
sequent clustering of the attention weights, ϵ = 0.7, min_sample = 3. The text
prompts are consistent with the official implementation of CLIP. The average of
80 short sentence prompts is taken to represent the final text feature.

Datasets. We have a total of 9 benchmarks in the experiments, involving 4
datasets:

– COCO [1]: There are a total of 80 object classes and 91 stuff classes. We
use a total of 171 classes as COCO-stuff, and a total of 81 classes of objects
and additional background classes as COCO-object.
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Table 3: Performance comparison of four evaluation indicators for image
size 224. The best average performance under each metric is bolded.

Image size=224 CLIP SCLIP CLIPtrase (Ours)
Evaluation pAcc mAcc fwIoU mIoU pAcc mAcc fwIoU mIoU pAcc mAcc fwIoU mIoU

COCO-obj 23.45 20.58 14.39 12.98 49.05 59.43 37.38 40.68 50.08 62.50 38.19 43.56
VOC21 42.21 47.21 30.47 17.54 77.52 83.27 66.46 49.54 78.63 84.11 67.67 50.88
PC60 21.84 21.22 11.02 8.80 49.24 51.55 35.04 28.09 52.14 56.08 37.61 29.87

COCO-stuff 10.85 12.02 5.66 4.68 35.24 40.02 24.42 21.00 38.90 44.47 26.87 22.84
VOC20 58.50 58.35 44.02 41.88 87.51 89.92 79.21 77.58 89.68 91.40 82.49 80.95
PC59 24.60 21.78 13.29 9.70 55.69 52.58 42.13 31.58 58.94 57.08 45.28 33.83
PC459 16.94 4.02 9.31 1.92 41.15 18.63 32.72 8.48 44.18 21.53 35.22 9.36

ADE150 5.20 7.61 2.59 2.25 33.00 34.43 23.44 14.46 38.57 39.17 27.96 16.35
ADEfull 2.69 3.13 1.21 0.76 20.06 16.46 14.55 5.43 25.45 18.78 18.99 6.31

AVG. 22.92 21.77 14.66 11.17 49.83 49.59 39.48 30.76 52.95 52.79 42.25 32.66

– PASCAL CONTEXT [33]: There are 459 categories in total, and we select
59 common categories as PC59, and all categories as PC459. In addition, we
add an additional background as PC60 based on PC59.

– PASCAL VOC2012 [16]: There are 20 categories in total, which we refer
to as VOC20. In addition, we add common background categories as VOC21
based on VOC20.

– ADE20K [59]: There are 847 classes in total, and we select 150 of them as
ADE150, and all classes as ADEfull.

Evaluation Protocol. Following the common practice [7, 17, 54], we use the
mean of class-wise intersection over union (mIoU) to measure the performance.
In addition, we also report on the performance of mean accuracy (mAcc), pixel
accuracy (pAcc), and frequency weighted intersection over union (fwIoU) to
comprehensively verify the performance of our method from multiple aspects.

B.2 More Experiment Results

We mainly reproduce the semantic segmentation of CLIP [36] and SCLIP [48] on
various datasets, and mainly compare the two models to analyze the effectiveness
of our model in the training-free open vocabulary semantic segmentation.

Compared with the results in the main text, we mainly supplement the dif-
ferent image sizes of pAcc, mAcc, fwIoU and mIoU using CLIP, SCLIP and our
own methods on each dataset in Table 3 and 4, to prove the effectiveness of our
method from a more comprehensive perspective. Judging from the improvement
of pAcc, our method distinguishes and clusters objects with different semantics
in the image, rather than just focusing on the main object. Although some ob-
jects are uniformly regarded as background, we think this advantage will have
greater potential in subsequent downstream tasks.
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Table 4: Performance comparison of four evaluation indicators for image
size 336. The best average performance under each metric is bolded.

Image size=336 CLIP SCLIP CLIPtrase (Ours)
Evaluation pAcc mAcc fwIoU mIoU pAcc mAcc fwIoU mIoU pAcc mAcc fwIoU mIoU

COCO-obj 22.53 19.85 13.55 12.63 48.34 57.62 36.79 40.43 50.01 62.55 38.24 44.84
VOC21 43.16 45.97 31.39 17.31 79.41 82.66 68.64 51.79 79.93 85.24 69.10 53.04
PC60 21.84 21.25 11.20 8.91 49.95 51.45 35.88 29.00 53.21 56.43 38.76 30.79

COCO-stuff 11.11 11.95 5.82 4.70 35.97 39.51 25.08 21.61 40.14 45.09 27.96 24.06
VOC20 57.12 57.92 42.60 41.06 87.03 90.97 78.48 79.12 89.51 91.77 82.15 81.20
PC59 24.53 21.81 13.42 9.82 56.50 52.49 43.08 32.59 60.15 57.47 46.64 34.92
PC459 16.94 3.94 9.50 1.88 42.07 18.43 33.73 8.97 45.77 20.72 36.67 10.11

ADE150 5.64 7.65 2.89 2.3 33.84 32.28 24.27 14.76 39.92 37.75 29.17 17.04
ADEfull 2.96 3.04 1.39 0.79 21.33 15.3 15.9 5.28 26.73 17.99 20.3 5.89

AVG. 22.87 21.49 14.64 11.04 50.49 48.97 40.21 31.51 53.93 52.78 43.22 33.54

Table 5: Results on unsupervised semantic segmentation. We use datasets
that are consistent with the baselines, with the dataset suffix indicating the number of
categories.

mIoU PiCIE [8]
(CVPR’21)

STEGO [23]
(ICLR’22)

HP [38]
(CVPR’23)

SmooSeg [25]
(NIPS’23) Ours

coco27 13.8 24.5 24.6 26.7 30.8
cityscape27 12.3 21.0 18.4 18.4 20.0

In addition, under these measurement standards, no matter with which res-
olution, our model is about 3% higher than SCLIP, which can more comprehen-
sively prove the effectiveness of our method.

B.3 More applications

In addition to the application mentioned in the main paper that involve com-
bining our model with SAM, it can be applied to many other areas as well.

Combining with unsupervised semantic segmentation. Our CLIPtrase
model, by recovering the internal local correlations within CLIP through self-
correlation, enables CLIP to provide more semantic contextual details within
images. This kind of information is invaluable for tasks that lack pixel-level
annotations, such as semi-supervised and unsupervised semantic segmentation.

Taking unsupervised semantic segmentation tasks as an example, we combine
the generalization capability of Clip with the region correlations recovered by
our method and apply them to the unsupervised task. We compare our approach
with SOTA models in Table 5 and find that our CLIPtrase plays a significant
role in unsupervised semantic segmentation.
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Fig. 1: The convergence of our approach combined with SAN.

Combining with training OVSS. Additionally, our method can also assist
OVSS models that require training. For instance, for the SAN [53] model, we
utilize the features and masks from CLIPtrase and perform mask average pooling
(MAP) to initialize the query embedding in SAN.

Our method helps improve the training speed of the SAN model. SAN itself is
a lightweight model, when combined with our approach, which shown in Figure 1,
it further reduces the training burden, resulting in a doubling of the convergence
speed on specific datasets.

C Related Work

C.1 Contrastive Language-Image Pre-training

Contrastive Language-Image Pre-training (CLIP) [36] is a large multi-modal
foundation model, which utilizes the contrastive training of aligning visual and
text corresponding category features, greatly improves the generalization on
unseen samples. Currently CLIP is widely used in Few-Shot/Zero-Shot Learn-
ing (FSL/ZSL) [22, 26, 29, 61, 62], Prompt learning [22, 26, 61, 62] and Out-of-
Distribution (OoD) [40] tasks. Later, researchers begin to apply CLIP to dense
feature tasks [39,49,57,58] such as semantic segmentation [29,41].

Li et al. [27] elaborate on the inherent noise problem of CLIP and introduce
it into the open vocabulary task from the perspective of explainability through
self-attention improvement. Unlike pipelines that generally fine-tune pre-trained
models on additional data sets, the CLIP encoder often needs to be frozen and
cannot be fine-tuned because it needs to maintain alignment with the text fea-
ture space [60]. Therefore, researchers currently prefer to use clip directly as
an encoder to obtain preliminary features to inherit its excellent generalization
ability, and pay more attention to design sophisticated decoders [9,13,18,37,50]
to refine the image-level features to adapt to dense feature tasks.

C.2 Open-Vocabulary Semantic Segmentation

Open-vocabulary semantic segmentation extends segmentation [5, 10–12, 20, 24,
32, 35, 45–47] and refers to segment semantic regions via textual names or de-
scriptions for the open world without any mask annotations. Early works [60]
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verify the importance of modal alignment in CLIP, and common downstream
fine-tuning may destroys its generalization ability. MaskCLIP [60] attempts to
improve the Vision Transformer (ViT) [15] structure of CLIP to allow the model
to obtain coarse feature localization, and combines transductive learning to im-
prove performance. CLIP-Surgery analyzes the difficulty of the current semantic
segmentation task introduced by CLIP from the perspective of image-text noise,
and made certain improvements to the model using the idea of self-attention.
SCLIP [48] inherits the idea of self-attention of MaskCLIP and directly adapts
the improved CLIP structure to the semantic segmentation task.

Both CLIP-Surgery and SCLIP utilize the idea of self-attention to improve
CLIP, while only CLIP-Surgery mentions the noise problem caused by the open
category of text. None of them explore and analyze why CLIP lacks the semantic
correlation between patches. Our work complements this point that it is the
global patch formed during the attention interaction between [CLS] token and
patches that leads to this.

The above methods attempt to directly apply CLIP to semantic segmentation
tasks. In the methods of training on additional segmentation datasets, CLIP
tends to be used as an encoder. We roughly divide them into two ideas:

Decoder-based. Inspired by MaskFormer [7] and Mask2Former [6], open vo-
cabulary semantic segmentation widely use the pipeline of mask generation +
mask classification. This method trains the refined features using a pixel de-
coder and utilizes an additional query decoder to aggregate the refined features
at different positions. It employs query embedding to obtain masks for differ-
ent objects, calculates the similarity between query embedding and texts, and
then weights the query masks accordingly to ultimately yield boundaries and
categories for each class.

Thanks to the excellent architecture of MaskFormer, the effect of the mask
generation module masks great progress. However, The generalization perfor-
mance of the above mask classification on unseen samples is always the bottle-
neck of this problem [28] due to the limitation of training scale. Therefore, some
researchers combine it with CLIP to complete the classification of masks through
the generalization of CLIP and improve the model performance [14,19,31,42–44].

For example, Xu et al. [53] design the side network to generate masks in
parallel with CLIP, and then use the masks as the attention bias to learn the
corresponding [CLS] token for each mask and complete mask classification. Sim-
ilar ideas include TCL [3], which enables CLIP simultaneous participation in the
mask generation and classification stages by reusing the visual branch.

Another method with the idea of combining CLIP and masks is GroupViT
[4, 52]. It designs multiple group tokens, continuously aggregates them during
the text guidance training process, and finally makes each group token cover the
area of a specific object. However, compared with the above idea, the prediction
results of this method often contain messy and tiny segmented areas.

Fine-tuning. In addition, there are also methods that advocate direct fine-
tuning of the CLIP [28, 30, 34, 47, 55, 56], among which the typical method is
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OV-Seg [28]. It believes that the classification of images after masks is may have
the domain shift problem, so OV-Seg use additional masked dataset to fine-tune
the CLIP, adapt to the special need of mask classification. MAFT [21] draws
on the idea of SAN [53] and fine-tunes the process of generating corresponding
[CLS] tokens based on the attention bias formed by different masks, so that it
can also achieve the purpose of improving mask classification performance.

There are also methods to directly use the contrast learning idea of CLIP to
retrain the encoder at the patch or pixel level. For example, PACL [34] refines
this alignment to the patch level and improves semantic coherence issues.

Despite the decent results demonstrated by the two approaches, they still
possess their respective issues. For the decoder-based method, the CLIP’s fea-
tures are obtained via a frozen CLIP model without specific adjustments to adapt
them for semantic segmentation. Instead, this issue is addressed through the ad-
dition of an external decoder. On the other hand, although fine-tuning allows for
a certain degree of adaptation of CLIP’s image-text aligned features, it carries
the risk of overfitting to specific scenarios, e.g., the domain of the masked images
used for fine-tuning, leading to a decline in performance. Therefore, we need to
consider whether it is possible to optimize CLIP’s features without finetuning,
in order to unearth more information that can aid in semantic segmentation.
To answer this question, we start by investigating the correlations between the
[CLS] token and the patch tokens.

D Visualization

In this section, we mainly visualize the effects of several modules in the method
in detail.

Figure 2 illustrates the global patch problem we mentioned above, and the
results improved with our semantic relevance recovery method. We demonstrate
this global patch phenomenon and the performance of our improved method in
various image situations through richer visualizations.

In the original CLIP, the response heat map of the area we select is completely
inconsistent with the semantic area where it is located due to the global patch.
However, with our semantic correlation recovery, this dilemma can be greatly
improved, and surprising semantic correlations can also be observed among mul-
tiple objects with same semantics that are located at a considerable distance
from each other.

Figure 3 shows the clustering effect of our model and the noise problem
caused by the global patch. We perform denoising operations on this basis, and
obtain masks with better qualities, finally finish the predictions of semantic
segmentation. In the visualization, the result after denoising is actually the final
semantic segmentation results, here we do not mark specific category labels on
the images for simplicity.
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Input CLIP Ours Input CLIP Ours

Fig. 2: More comparisons before and after semantic correlation recovery.
The red dot indicates the selected patch position.
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Input Clusters Denoise Input Clusters Denoise

Fig. 3: Visualization of clustering results and denoising results in our
method. The red box represents the noise caused by the existing global patches.
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