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Abstract. While conversational generative AI has shown considerable
potential in enhancing decision-making for agricultural professionals, its
exploration has predominantly been anchored in text-based interactions.
The evolution of multimodal conversational AI, leveraging vast amounts
of image-text data from diverse sources, marks a significant stride for-
ward. However, the application of such advanced vision-language mod-
els in the agricultural domain, particularly for crop disease diagnosis,
remains underexplored. In this work, we present the crop disease do-
main multimodal (CDDM) dataset, a pioneering resource designed to
advance the field of agricultural research through the application of mul-
timodal learning techniques. The dataset comprises 137,000 images of
various crop diseases, accompanied by 1 million question-answer pairs
that span a broad spectrum of agricultural knowledge, from disease
identification to management practices. By integrating visual and tex-
tual data, CDDM facilitates the development of sophisticated question-
answering systems capable of providing precise, useful advice to farmers
and agricultural professionals. We demonstrate the utility of the dataset
by finetuning state-of-the-art multimodal models, showcasing significant
improvements in crop disease diagnosis. Specifically, we employed a novel
finetuning strategy that utilizes low-rank adaptation (LoRA) to finetune
the visual encoder, adapter and language model simultaneously. Our
contributions include not only the dataset but also a finetuning strat-
egy and a benchmark to stimulate further research in agricultural tech-
nology, aiming to bridge the gap between advanced AI techniques and
practical agricultural applications. The dataset is available at https:
//github.com/UnicomAI/UnicomBenchmark/tree/main/CDDMBench.
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1 Introduction

The accurate diagnosis of crop diseases is pivotal in agricultural practices, of-
fering invaluable support to individuals involved in farming activities. However,
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Fig. 1: Example comparison of LVLMs on crop disease diagnosis. Our model accu-
rately identifies crop and disease categories, offering detailed prevention and treatment
methods. In contrast, Qwen-VL-Chat fails to determine both crop and disease cate-
gories, and provides detailed prevention and treatment methods, as indicated by the
red texts.

prevailing solutions for crop disease diagnosis predominantly rely on single-modal
approaches, such as visual algorithms for classification [2,18] and detection [28].
These single-modal methods can only provide diagnosis results and cannot offer
richer agricultural knowledge based on human preferences. The imperative for a
multimodal visual question answering (VQA) system [5, 13], proficient in diag-
nosing crop diseases while possessing extensive agricultural knowledge, becomes
evident. Such a system, facilitated by multimodal interactions and multi-round
conversations, has the potential to expedite the retrieval of information concern-
ing specific diseases and recommend appropriate mitigation strategies.

Most popular large-scale vision-language models (LVLMs), such as minigpt4
[30], Flamingo [3], LLaVA [24] and Qwen-VL [9], while effective as general-
purpose multimodal conversational assistants [7,14,21], struggle in the crop dis-
ease domain. For example, Qwen-VL struggles with accurately identifying crop
types, diagnosing diseases, and falls short in providing detailed strategies for dis-
ease prevention and control, as shown in Figure 1. Consequently, developing a
multimodal dataset specifically for adapting LVLMs to the crop disease domain
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Fig. 2: Examples of the crop disease image dataset. Each image represents a different
category, and the leaves show a high degree of similarity, from their colors to their
shapes. Additionally, some spot diseases display very similar visual features. Among
the images, the two marked with red boxes represent different diseases but look very
similar; the two marked with yellow boxes belong to different types of crops but have
a very similar shape.

is essential to enhance their accuracy and utility in agriculture. Building on this
need, our work introduces a CDDM dataset.

Current finetuning strategy for LVLMs involves freezing the visual encoder
while adjusting the projection/adapter module and the language model [24].
However, this approach faces challenges in the crop disease domain, due to the
similarity of different crop diseases (as shown in Figure 2). Employing this strat-
egy means the visual encoder’s ability to differentiate similar samples is limited,
ultimately impacting the accuracy of disease diagnosis.

The contributions of our paper can be summarized as follows:

– The CDDM Dataset: We have meticulously curated a comprehensive dataset,
comprising 137,000 images of crop diseases, and constructed a diverse set of
1 million question-answering instances. As illustrated in Figure 3, for each
diseased crop image, we’ve crafted conversations that encompass a range
of information, including the crop and disease categories, detailed disease
insights, and prevention and control strategies. This dataset serves as a fun-
damental resource for training models, which are capable of comprehending
and addressing queries related to crop diseases.

– Model Finetuning Strategy: We adopted a novel finetuning strategy utilizing
the LoRA [17], for training Qwen-VL-Chat on the CDDM dataset without
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freezing the visual encoder. Our experiments have validated the effective-
ness of this strategy, demonstrating its potential to significantly improve
diagnostic accuracy in the agricultural domain.

– Open-Source Initiative: To promote research in the field of agricultural multi-
modal learning, we intend to release our dataset and the corresponding model
codebase to the public. This initiative aims to foster collaboration and propel
further advancements in the development of multimodal question-answering
systems tailored for agricultural applications.

In conclusion, our work not only addresses the current limitations in crop
disease diagnosis but also lays the groundwork for the development of specialized
multimodal question-answering systems in the agricultural domain. Through the
dissemination of our dataset and finetuned models, we aspire to pave the way
for more effective and knowledgeable agricultural assistants that can significantly
contribute to the enhancement of crop yield and overall farm management.

2 Related Work

2.1 Related Work on Traditional Agricultural Diseases Diagnosis

Traditional agriculture heavily relies on the observation and expertise of farmers
and experts for the diagnosis and treatment of crop diseases. However, with the
advent of smart agriculture, there is a growing trend towards utilizing computer
vision methods to assist in disease diagnosis. Arya [6] employed AlexNet [19]
architectures to detect diseases in mango and potato leaves. Yang [29] proposed
a multimodal feature fusion network that combines RGB image networks with
hyperspectral band extraction networks to improve the recognition accuracy
of citrus Huanglongbing. Furthermore, Morbekar [25] utilized YOLO [27] for
object detection to identify plant diseases, while Divyanth [12] introduced a two-
stage segmentation method using YOLO for plant segmentation and a disease
segmentation model. These methods offer limited information, falling short in
effectively aiding farmers with crop disease prevention and control.

2.2 Multimodal Methods

Multimodal question answering combines image and text information for an-
swering queries. In a conventional VQA model, an image and a question are
input, with visual and language encoders embedding them respectively. Follow-
ing this, a cross-modal attention block utilizes the embeddings from both visual
and language sources to understand the connections between the image and the
question, which is crucial for making the final prediction. Lan [20] created a
question-answer pairs dataset for fruit tree diseases, employing a co-attention
architecture aligning ResNet [16] and BERT [11] features to achieve simple agri-
cultural multimodal question-answering. However, this VQA model supports a
limited range of crop diseases. Due to the limitations of its architecture, it has
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Fig. 3: An instance of our CDDM data. The conversations cover the diagnosis, pre-
vention, and treatment of crop diseases.

restricted generalization capabilities, offering only simplistic answers and lacking
comprehensive agricultural knowledge.

The most popular LVLM typically combines a visual encoder and a large lan-
guage model [1,4, 8,10,15] via an adapter or a projector, where the former pro-
vides high-quality visual representation, and the latter offers powerful language
generation capability. Li [23] proposed using a lightweight querying transformer
to align image encoders and frozen large language models. Liu [24] introduced
LLaVA model which is trained with multimodal instruction-following data [26],
and achieves a relative score of 85.1% compared to GPT-4. Bai [9] presented the
Qwen-VL model, which is trained on 1.14 billion image-text pairs. While these
models excel in general domains, they are less effective in crop disease diagnosis
because the image-text pairs specific to crop diseases differ significantly from the
counterpart found on the web.

3 Crop Disease Domain Multimodal Dataset

To construct a robust crop disease diagnosis multimodal question-answering
model, we developed a CDDM dataset. As depicted in Figure 3, we present
a sample of the CDDM data, comprising an image of crops alongside a series
of interactive conversations. This dialogue encompasses a range of information,
including the identification of the crop, diagnosis of any diseases affecting it,
as well as details regarding the causes of these diseases and measures for their
prevention and control.
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Fig. 4: Distribution of the number of images for crop diseases dataset.

Here, we outline the construction process from three key aspects: crop image
data collection and annotation, crop disease diagnosis instruction-following data,
and crop disease knowledge instruction-following data.

3.1 Crop Image Data Collection and Annotation

The image data for this study consists of two parts:

– Web Data: This includes agricultural datasets from Kaggle as well as agri-
cultural disease data collected using web crawling methods, totaling 62,000
images.

– Private Data: We conducted field surveys in multiple farms and orchards to
collect plant disease images, resulting in a total of 75,000 original images.

With the assistance of agricultural experts, we annotated all image data. The
annotation information primarily includes crop category, disease category, and
appearance description of the image.

Through data collection and annotation, we have compiled a dataset com-
prising 137,000 images. The dataset encompasses 16 categories of crops and a
total of 60 categories of crop diseases. As illustrated in Figure 4, there are 48
categories each containing more than 500 images, while 7 categories feature im-
age counts ranging from 200 to 500. Overall, the distribution of data across
categories is relatively even.

In addition, we collected text content of crop diseases knowledge related
to crop diseases covering detailed descriptions including crop, disease, disease
symptoms, pathogen characteristics, transmission pathways, disease conditions,
prevention and control methods.
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Fig. 5: The prompt example of utilizing GPT-4 to generate instruction-following data
of crop disease diagnosis. In the few-shot example within the "Prompt" part, the QA
pairs highlighted in red are carefully crafted to include negative responses. After se-
quentially entering the "Prompt" part and the "Query" part, GPT-4 can generate 8
similar QA pairs, with negative responses highlighted in green.



8 X. Liu et al.

Fig. 6: Distribution of the average lengths of questions and answers for different crop
diseases in the CDDM Dataset.

3.2 Crop Disease Diagnosis Instruction-Following Data

To enable the model to accurately diagnose crop diseases, we generate diverse
instruction-following data through multi-round conversations about the provided
crop images, utilizing language-only GPT-4 prompting. Specifically, we design
few-shot instructions in a prompt that asks GPT-4 to generate questions and
answers, with input {crop category, disease category, appearance description}.

Experiments revealed that LVLMs tend to give affirmative responses more
often in diagnosing plant species and disease categories. When posed with ques-
tions requiring negative answers, the visual model frequently errs by providing
incorrect affirmative responses. Consequently, in crafting the question-answer
corpus, we incorporated questions necessitating negative answers.

Figure 5 illustrates a prompt example for generating instruction-following
data of crop disease diagnosis using GPT-4. In the "Prompt" part, we provide
a few-shot example consisting of 8 questions and answers. The pairs highlighted
in red are carefully crafted QA pairs with negative responses. After sequentially
entering the content from the "Prompt" part and the "Query" part, GPT-4 can
generate 8 similar QA pairs. The parts highlighted in green are the generated
QA pairs with negative responses.

The instruction-following dataset of crop disease diagnosis contains over 1
million question-answer pairs. The average question length is 6.11 words, while
the average answer length is 8.92 words. Figure 6 shows the distribution of the
average lengths of questions and answers for 60 types of crop diseases.

3.3 Crop Disease Knowledge Instruction-Following Data

Based on the text content of crop disease knowledge we collected, we utilized
GPT-4 to generate instruction-following conversations. The full prompt and the
detailed example can be found in Figure 7. Below is an example from the content
in the "Query" section:
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Fig. 7: The prompt example of utilizing GPT-4 to generate instruction-following data
of crop disease knowledge. After sequentially entering the "Prompt" section and the
"Query" section, GPT-4 can generate high-quality QA pairs.

{"title": "Tomato Early Blight", "summary": "Tomato Early Blight, also
called ’ring pattern disease’, is a common and major pest of tomatoes. Some
localities have been encouraged to grow more virus-resistant tomato varieties
instead of those resistant to early blight, leading to severe blight outbreaks. The
disease affects a broad range of plant hosts, including, but not limited to, crops
in the Solanaceae family, such as eggplants, peppers, and potatoes."}

Corresponding to this, the content of the question and answer pair generated
by GPT-4 is presented as follows:

{"user": "What is Tomato Early Blight?","assistant": "Tomato Early Blight,
also known as ’ring pattern disease’, is a common and major pest of tomatoes
that affects a broad range of plant hosts, including crops in the Solanaceae family
such as eggplants, peppers, and potatoes."}

In the crop disease knowledge instruction-following dataset, the average ques-
tion length is 9.69 words, while the average answer length is 130.41 words.

The CDDM Dataset: We constructed the CDDM dataset by merging
crop disease diagnosis and knowledge instruction-following data and crop dis-
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Fig. 8: The LoRA training strategy on Qwen-VL-Chat.

ease knowledge instruction-following data according to plant species and disease
types.

4 Adapting Multimodal Conversational Models to the
Crop Disease Domain

We introduce a novel approach capable of adapting general LVLMs to agricul-
ture focused LVLMs. Here, we use Qwen-VL-Chat as an example. Qwen-VL-
Chat integrates three critical components: a language model, a visual encoder,
and a position-aware vision-language adapter, i.e. cross attention module. As
illustrated in Figure 8, our method involves a specialized training regime, utiliz-
ing the LoRA technique, tailored specifically towards the domain of crop disease
diagnosis.

Our primary goal is adapting the Qwen-VL-Chat model to accurately di-
agnose crop diseases. To achieve this, We employ the LoRA training technique
to simultaneously adjust the parameters of all three components of the model:
the language model, the visual encoder, and the position-aware vision-language
adapter. Our finetuning strategy is quite different from the finetuning strategy
in LLaVA and Qwen-VL-Chat where the parameters of the visual encoder are
not updated during finetuning.

5 Experiments

To evaluate the utility of our proposed dataset and fine-tuning strategy, we
fine-tuned the LLaVA model and the Qwen-VL-Chat model using two different
strategies on our dataset. One strategy is without freezing the visual encoder,
the other is with freezing the visual encoder.

The model versions and hyper-parameters are below:
LLaVA-v1.5-7B hyper-parameters: {batch size: 128, learning rate: 2e-4,

epochs: 5, maximum sequence length: 2048, weight decay: 0}
Qwen-VL-Chat-7B hyper-parameters: {batch size: 128, learning rate: 1e-5,

epochs: 5, maximum sequence length: 2048, weight decay: 0.1}
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5.1 Evaluation Metrics

Crop Disease Diagnosis Performance. To assess the model’s efficacy in di-
agnosing crop diseases, we constructed a test set using 3,000 images that were
not included in the training set. The test set included a variety of questions
and answers to evaluate the model’s performance comprehensively. The perfor-
mance was measured based on the accuracy of the model’s responses, specifically
detecting the keywords of crop category and disease category in its answers.

Crop Disease Knowledge VQA Performance. Mirroring the evalua-
tion methodology used by LLaVA and LLaVA-Med [22], we employed GPT-4
to assess the quality of model’s generated responses to crop disease knowledge
questions. We started by manually selecting original data pertaining to 10 types
of crop diseases and crafting 20 questions. We randomly selected 20 images in the
10 types of crop diseases. Responses were then solicited from candidate models
based on the images and questions provided. To provide an approximate theo-
retical upper bound, We create a reference prediction based on the question and
the text content of crop disease knowledge, using the text-only GPT-4.

The responses from both the candidate models and the reference GPT-4 pre-
dictions were evaluated by GPT-4 for their helpfulness, relevance, and accuracy.
Each response was scored on a scale from 1 to 10, with higher scores indicating
superior overall performance. We calculated the total score for the model across
all questions, with the maximum possible score being 200. To normalize this to
a 100-point scale, we converted the total score accordingly.

Table 1: Results on crop disease diagnosis and knowledge QA. * indicates freezing the
visual encoder.

Model Crop Disease Diagnosis Crop Disease Knowledge QACrop Classification Disease Classification

Qwen-VL-Chat 28.4% 5.0% 41
Qwen-VL-Chat-AG* 84.4% 66.1% 88.5
Qwen-VL-Chat-AG 97.4% 91.5% 84

LLaVA-v1.5-7b 24.5% 5.9% 47.5
LLaVA-AG* 94.3% 82.1% 98
LLaVA-AG 98.0% 91.8% 96.5

5.2 Results

Table 1 shows the experimental results. As can be seen, the models finetuned
on our dataset outperform the LLaVA model and Qwen-VL-Chat model with a
large margin. Our dataset builds a connection between images and the concepts
of crops and diseases. This connection helps the finetuned models align image
features with the LLM word embedding and then improve the performances.
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The base models have poor accuracies because they are unable to fully model
the connection without training on our dataset.

The models finetuned without the visual encoder frozen outperform those
finetuned with the visual encoder frozen considerably. Due to the similarity in
appearance of different crops and different diseases (as shown in Figure 2), the
frozen visual encoder falls short of capturing the local details and patterns that
distinguish them because it is trained on the general domain dataset. Finetuning
it on our dataset enhances its ability to capture these local details and patterns,
which is why finetuning results in a significant performance jump.

In Figure 1, we showcase examples of dialogues between Qwen-VL-Chat-AG
and Qwen-VL-Chat in the context of crop disease diagnosis. Qwen-VL-Chat-AG
was able to precisely identify crop diseases and offer effective prevention and
treatment solutions, demonstrating the significant value of the CDDM dataset
and the finetuning strategy in developing professional agricultural chatbots.

5.3 Limitations

Handling diseases out of domain: We conducted several tests and found that
our fine-tuned models perform not well in handling diseases outside our dataset.
We guess that in-context learning might be the potential solution to this issue,
e.g., adding one/few examples out of domain in the prompt to guide the models
handling diseases in and out of domains. And we leave it as our future work to
explore.

6 Conclusions

We presented a CDDM dataset and a LoRA based finetuning strategy. A se-
ries of experiments are conducted to validate the utility of our dataset and the
finetuning strategy. The models trained on our dataset with the proposed fine-
tuning strategy gain significantly in the performances of crop disease diagnosis
and knowledge VQA. Our contributions include not only the dataset but also
a finetuning strategy and a benchmark to stimulate further research in agricul-
tural technology, aiming to bridge the gap between advanced AI techniques and
practical agricultural applications.
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