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Abstract. Accurate localization in diverse environments is a fundamen-
tal challenge in computer vision and robotics. The task involves deter-
mining a sensor’s precise position and orientation, typically a camera,
within a given space. Traditional localization methods often rely on
passive sensing, which may struggle in scenarios with limited features
or dynamic environments. In response, this paper explores the domain
of active localization, emphasizing the importance of viewpoint selec-
tion to enhance localization accuracy. Our contributions involve using a
data-driven approach with a simple architecture designed for real-time
operation, a self-supervised data training method, and the capability
to consistently integrate our map into a planning framework tailored
for real-world robotics applications. Our results demonstrate that our
method performs better than the existing one, targeting similar prob-
lems and generalizing on synthetic and real data. We also release an
open-source implementation to benefit the community at www.github.
com/rvp-group/learning-where-to-look.
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1 Introduction

Localization and mapping are fundamental building blocks of autonomous sys-
tems. Localization aims at determining the camera position within an environ-
ment, while mapping involves estimating a comprehensive representation of the
surrounding space. These capabilities enable agents to navigate and operate ef-
fectively in unexplored and dynamic settings, with applications ranging from
autonomous vehicles [4], precision agriculture [35], and augmented reality [17].

Decoupling localization and mapping is often advantageous due to the dis-
tinct nature of these processes, allowing for separate optimization. Offline map-
ping computation enhances accuracy by overcoming real-time processing con-
straints and generating a map before the actual operation. However, even with
offline computation, discrepancies in accuracy may exist across the map, impact-
ing certain areas more than others. For example, these differences can stem from
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Fig. 1: Pipeline. Given a Structure-from-Motion (SfM) model, we aim to learn the
camera viewpoint that can be employed to maximize the accuracy in visual localiza-
tion. Our methodology requires first sampling the camera locations and orientation,
calculating the best visibility orientation for each location, and learning active view-
point through a Multi-layer Perceptron (MLP) encoder. The illustration above shows
our full pipeline predicting active viewpoints for visual localization embedded into a
planning framework.

non-uniformly distributed observations within the space. In such map regions
characterized by heterogeneous accuracy, traditional localization methods may
encounter challenges in delivering precise position information [55]. The diffi-
culty lies in discerning meaningful features within the environment to facilitate
accurate localization, giving rise to the concept of active localization [5].

Active localization entails purposeful selection and observation of specific
environmental features to augment localization accuracy. In contrast to passive
sensing, where an agent merely observes its surroundings, active localization
allows the agent to actively seek out and concentrate on stable features. This
approach significantly enhances the ability to determine an accurate position,
particularly in complex or adverse environments.

This active approach to localization ensures adaptability to diverse surround-
ings and finds applications in collaborative scenarios. For instance, in human-
robot collaboration, active localization may involve seeking input from human
operators to identify critical features or areas of interest [17]. As technology
progresses, active localization plays a pivotal role in enabling consistent robotic
operation across a broad spectrum of environments, addressing challenges, and
advancing the field of perception and robotics.

The concept of active localization encompasses various interpretations, rang-
ing from enhancing map representation [17, 55] to optimizing localization ac-
curacy through robot planning [10, 34]. In the context of map representation,
studies have employed hand-crafted techniques, leveraging tools like the Fisher
information matrix and optimality theory [55]. Conversely, approaches grounded
in data-driven methodologies, which showed accurate results, necessitate collect-
ing the training data manually [17]. This study addresses both aspects, proposing
a map representation that identifies accurate active viewpoints. These viewpoints
serve the dual purpose of enhancing localization accuracy and being readily ac-
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cessible for efficient planning, thus encompassing the limitations observed in
existing proposed works.

Inspired by [55] and [17], our primary focus is to extract valuable informa-
tion from the environment’s geometry, aiming to enhance active visual localiza-
tion, enabling the integration of our map representation into a motion planning
framework for robotics applications. The contributions of our work include a
data-driven approach employing a compact architecture designed for real-time
operation, a self-supervised data training method, a map representation facilitat-
ing multiple active viewpoints at specific locations in space, and the capability
to compactly embed our map into a planning framework tailored for real-world
robotics applications. A visual summary of our pipeline is depicted in Fig. 1.

2 Related Works

Visual localization describes the task of estimating the camera position and ori-
entation for a query RGB/RGB-D image in a known scene (with databases).
This task has gathered significant focus, particularly on improving localization
accuracy from a certain perspective. Research within this field generally falls into
one of two primary categories: the direct (or one-step) approach and the two-step
approach. The first aims to directly estimate the camera pose from the query
frame [8,11,28,43,45,46,50–52]. This is also known as pose regression. Learning-
based models are increasingly being incorporated into this methodology, en-
hancing robustness and precision by integrating with conventional processes.
The two-step approach initially identifies correspondences between the query
frame and the database, followed by the estimation of the camera pose through
optimization. These correspondences can be visual features [13,30,36–40,42], or
dense correspondence between every pixel of the image [2, 3, 6, 12,24,48,53].

All the above approaches are passive localization, implying no active decision-
making regarding the camera’s viewpoint. Rather, the focus is on utilizing the
captured image for accurate and efficient localization. Some studies choose a dif-
ferent perspective to improve the performance of visual perception, such as in the
case of visual localization. The agent can adjust its sensors autonomously, aim-
ing to enhance perception from alternative viewpoints. This approach is known
as active perception, which has been an open research area for over twenty
years. Particularly within the domain of mobile autonomous agents, active per-
ception strategies are frequently combined with planning or navigation mod-
ules to improve outcomes in tasks like visual localization. This integration en-
ables the agent not only to perceive its environment more effectively but also
to make informed decisions about its movements to optimize perception results,
e.g. [10, 34,54], surface converging [15,22,25,31].

In the specific field of active localization, research has been relatively lim-
ited. A significant portion of the work in this area focuses on active viewpoint
selection through various geometric evaluation metrics. These metrics assess the
effectiveness of a selected viewpoint in terms of its impact on visual localization
performance. A noteworthy example of such research is [55]. It proposes an ef-
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ficient way of calculating the Fisher information in a 3D environment and uses
this quantity to find camera poses that maximize the visibility and vicinity of
feature landmarks. More recent works have tried to utilize additional informa-
tion from visual appearances, such as semantics from the image [1]. Most of the
works in this category design a hand-crafted metric that links the geometry and
appearance with the performance, such as visual localization accuracy. In con-
trast, we propose to learn from the distribution of the 3D landmarks and their
contribution to the visual localization task.

Learning-based approaches for active visual localization have recently started
to be investigated but mostly rely on end-to-end approaches. PoseNet [21], and
one of its extensions [9] use a convolutional network to implicitly represent the
scene, mapping a single monocular image to a 3D pose (position and orien-
tation). [7] proposed a perceptual model to estimate the belief of the current
robot state and a policy model over the current belief to localize accurately. The
authors in [14] propose an uncertainty-driven policy model to plan a camera
path for localization. Differently, [26] focuses on safety guarantee and proposes
a policy model that recommends a collision-free viewpoint while maximizing the
information gained from the observation. Works using a reinforcement learning
framework are usually tightly coupled with the action execution of the agent,
which makes it hard to train and generalize. A recent interesting study to learn
active viewpoints shows good results when the problem is cast to classifica-
tion [17]. However, this work requires user-selected labels, which might be hard
and time-consuming to obtain and does not consider an overall representation
of the map or involve motion planning.

In this work, we focus on extracting useful information from the environ-
ment’s geometry to enhance active visual localization with the possibility of em-
bedding our map representation into a motion planning framework for robotics
applications. The contributions of our work are as follows:

– a data-driven approach relying only on a compact architecture designed for
real-time operation in known environments;

– a way to learn in a self-supervised manner;
– a map representation that allows for a set of locations in the space to have

one or more active viewpoints available;
– an open-source implementation available at www.github.com/rvp-group/

learning-where-to-look.

The proposed method can easily be embedded into a planning framework for
real robotics applications.

3 Learning Where To Look

We present our viewpoint selection approach in this section. The core of our
approach is a learning-based viewpoint evaluation model. The model predicts a
visual localization score for an input viewpoint, indicating its efficacy for an accu-
rate localization result. The whole approach follows a “sampling-and-evaluation”

www.github.com/rvp-group/learning-where-to-look
www.github.com/rvp-group/learning-where-to-look
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Fig. 2: Learning active viewpoints. Given a set of camera poses parameterized as
homogeneous transformation matrices, obtained as explained in Sec. 3.1 and visibility
information (3D landmarks and their projections), our goal is to develop a scoring
function that discerns the suitability of a camera viewpoint for visual localization.
We first identify visible data from each camera view to achieve this, as elaborated in
Sec. 3.2. Subsequently, we encode this visible data through image binning for a fixed
input size. The encoded information is then fed into a MLP encoder, which predicts
the quality of the viewpoint for localization. This learning process, detailed in Sec. 3.3,
is supervised by consistently providing the camera position, querying an RGB image
through a simulator, and directly registering this image against a SfM model.

pipeline. We design a compact workflow to sample candidates’ viewpoints from
a given 3D environment and construct the input features of the certain view-
point to pass into the model. A similar data acquisition structure is also applied
during training to achieve self-supervision. This section starts with formulating
the viewpoint selection task, followed by introducing our major components for
building our data collection and learning pipeline, including initial viewpoint
sampling, visibility check, and model training.

Our goal is to find a set of camera viewpoints within a sparse set of landmarks
or point cloud P = {l0, . . . , lL} with each landmark l ∈ R3 that when employed
during localization allow to maximize its accuracy. We discretize the orientations
R = {R0, . . . ,RN} ∈ SO(3)N and the locations V = {t0, . . . , tM} ∈ R3×M ,
using spherical sampling and a voxel grid, respectively. Using the following dis-
cretization, we create the set of camera viewpoints parameterized as homoge-
neous transformation matrices where an element is represented by Tij and is
parameterized as follows:

Tij =

[
Ri tj
0 1

]
,

i = 0, . . . , N
j = 0, . . . ,M

(1)

Given these two input sets, for each position tj and orientation Ri, we aim to
learn a scoring function that evaluates their suitability for visual localization. Let
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Fig. 3: Camera viewpoint generation. We represent our map as a discrete voxel
grid V and a discrete set of orientations R constructed within the boundaries of a 3D
reconstruction, e.g., coming from a SfM method. We filter the best directions from each
camera location in the voxel grid based on visibility Q, gradually removing occlusions.
The illustration is done in 2D for ease of visualization.

this scoring function be fP(Ri, tj) → [0, 1]. Note that this map representation
is fundamental to self-generate data to implicitly learn fP(Ri, tj) and can be
employed for inference at constant time (i.e. for path planning). A summary of
our learning strategy is illustrated in Fig. 2.

In the next two sections, we present how we sample the 3D locations and
orientations composing our map (Sec. 3.1). After, we discuss how the best set
of orientations Q for each camera location is selected based on landmarks visi-
bility (Sec. 3.2). Finally, in Sec. 3.3 we present how we learn the function fP to
select what viewpoints in the map are more suitable for localization, through a
lightweight MLP.

3.1 Sampling

In this section, we detail the process of sampling locations V and orientations R.
This enables us to establish a discrete representation of the map, which is essen-
tial for localization and applies during both the training and inference phases.
During training, this representation becomes necessary for facilitating the self-
generation of data. During inference, this representation can be advantageous for
planning; however, it is not strictly necessary, given that our learning strategy
can effectively utilize any specified position t and orientation R of the camera.
This procedure is detailed below and illustrated in Fig. 3.

Location. Given as input map a sparse set of landmarks or point cloud P and,
the 3D boundary of the map, we construct a voxel grid V to sample camera
positions t in the center of each voxel or camera bucket. The resolution of the
voxel grid can be arbitrarily determined. In our experiments, we split the 3D
space in a 8×8×8 grid, representing each voxel as a cuboid. A mapping between
the camera position and their location in memory is stored in a hash table,
allowing O(1) insertions and look-ups.
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Fig. 4: Spherical sampling methods. The left plot shows classical azimuth-elevation
sampling. The right one is Fibonacci sampling. We employed the technique on the right,
given the more uniform distributed pattern.

Orientation. This step is required to generate the set of discrete orientations
R. We only consider azimuth θ and elevation ϕ of S2 from SO(3) to determine
each rotation, omitting the rotation around the camera optical-axes. For sam-
pling, we employ the spherical Fibonacci sampling algorithm [16]. This sampling
is organized in a closely wound generative spiral, where each point is positioned
within the largest gap between the preceding points. Different from the classic
azimuth–elevation sampling where equal angles of azimuth and elevation sepa-
rate each point, this sampling exhibit a uniformly distributed pattern in a highly
isotropic manner. The difference with a classical azimuth-elevation sampling can
be appreciated in Fig. 4. Given the lattice nature, angles are incrementally gen-
erated in the following way:

θi = arccos

(
1− 2i

N

)
, ϕi = iπ

(
1 +

√
5
)
, i = 0, . . . , N. (2)

We calculate R = RθRϕ ∈ SO(3) making a rotation along the x-axis, followed
by a rotation along y-axis.

3.2 Visibility Check

After sampling the set of orientations R for each camera position tj , it becomes
crucial to identify the subset Qj that enables the visibility of 3D landmarks.
It is important to discard viewpoints where none or only a minimal number of
landmarks are visible. To accomplish this, we perform an initial visibility check
to obtain Qj ⊆ R that maximizes visibility. Note that Qj is the set calculated
for each camera location j, hence {Q0, . . . ,QM} ⊆ Q.

To perform visibility checks, we generate a virtual image for each view Tij ,
projecting each landmark in P, given the camera intrinsics. A projection is a
mapping π : R3 → Γ ⊂ R2 from a landmark l to image coordinates u = [xu, yu]

T .
In our algorithm, we employ the pinhole projection model [18]. However, it can
be straightforwardly replaced by any other model. For each camera location, we
keep the best orientations that provide the highest number of visible landmarks.
In order to detect occlusions, given the sparsity of P, we perform one of the
following steps based on the input (i.e., depending on whether dense depth data
is available or not):
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– with dense depth, we run a Truncated Signed Distance Function (TSDF)
integration and store a dense model in a hash table similar to the one origi-
nally proposed in [29]. This assumes to have generated a dense model other
than P during mapping. This model can be queried in O(1) given Tij , and
occlusions can be detected using a simple z-buffer algorithm;

– without dense depth, we employ a sparse hidden point removal technique [20]
based only on sparse data P. Given a viewpoint, this method first transforms
the point cloud points to a new range-dependent domain and then constructs
the convex hull in that domain.

While the second approach does not require additional input, it is expected to
be less accurate due to having significantly less information regarding the scene.

Given the independence of each Tij , we implemented this initial visibility
check on the GPU with CUDA for faster computation. After identifying the
viewpoints that maximize the visibility of landmarks for each camera position
tj , we sort the viewpoints in descending order, prioritizing visibility.

3.3 Training

Using the best set of orientations Q we can obtain the full set of viewpoints
that maximizes the visibility. For each viewpoint, we compute a feature vector
xk that contains the visibility information and an expected value yk represent-
ing if the viewpoint is good enough for localization. Therefore, our viewpoint
evaluation model learns a scoring function fP(R, t) → [0, 1], that given a set of
input features x, provides an estimate of the normalized localization quality. For
learning, we employ a mean weighted binary-cross-entropy loss within a MLP
encoder, casting the problem to classification:

L(W) =
1

|D|

|D|∑
k=1

wk(yk log pk + (1− yk) log(1− pk)), (3)

where D is the dataset D = {(xk, yk)}. The term pk denotes each sample’s
classifier output probability, yk denotes the correspondence target label, and
wk is the weight balancing the negative and positive samples. Additionally, to
address overfitting, we incorporate regularization terms into the loss function:

Ltotal(W) = L(W) + λ

L∑
l=1

∥Wl∥22, (4)

where Wl represents the weights of layer l in the MLP, and λ controls the
regularization strength.

Data. In order to learn our scoring function fP(R, t), we provide xk for each
camera viewpoint Tk. This involves only the set of visible landmarks ∈ R3H

and their reprojections in a virtual image π(T−1
k P) ∈ R2H . In our experiments,
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we try different input data, namely xk ∈ R2H : only landmarks projection, xk ∈
R3H : image projections and depth data, and xk ∈ R5H : image projections and
3D landmarks in camera frame (T−1

k P). For now, we assume that our best
model is the latter; however, in Tab. 3, we show numerically how this different
information impacts localization score. A crucial aspect in both localization and
image registration is the spatial distribution of features throughout the image
[47]. The more uniform this distribution is across the image, the higher the
likelihood of obtaining accurate results in the registration process and the less
likely to have a degenerate solution [49]. To ensure a consistent and fixed input
for our network, particularly given the variations in the number of observable
landmarks across diverse viewpoints, we employ image binning (i.e., grouping
the reprojected landmarks into discrete cells in the image). In our experiments,
we set this grid dimension to be 30 × 30 bins. Within each bin, we calculate
the mean of visible landmarks both in 3D and in 2D. This technique allows
a consistent input that considers the distribution of the features in the image
rather than performing, for instance, random sampling. Bins without visible
landmarks are systematically assigned a zero value. The proposed strategy allows
a uniformly distributed fixed input size for the MLP encoder without affecting
the complexity of the model and/or additional preprocessing steps. Given the
heterogenous input (2D projections, 3D landmarks, or depth landmark data)
and to speed up the training process, we standardize the input data. For each
feature x, we calculate its corresponding standardized value z = x−µ

σ , where µ
and σ are the mean and standard deviation of the kind of input. The benefits of
centering the feature values around zero are described in [23].

Layer Type
1 fully connected input-size × 300

1.1 ReLU
1.2 dropout 0.5
2 fully connected 300× 300

2.1 ReLU
2.2 dropout 0.5
3 fully connected 300× 1

3.1 Sigmoid

Table 1: The architecture employed to
classify the quality of camera viewpoints.

Self-supervision. In our approach,
we leverage our structured framework
that involves inputting a SfM model
and constructing a set of 3D loca-
tions denoted as V and a collection of
orientations represented by Q as ex-
plained in Sec. 3.1. For each viewpoint
Tk generated through our method-
ology, we use a simulator relying on
Open3D [56] and Habitat - Matter-
port 3D meshes [33] to extract a dense
RGB image. If the depth image can be
queried, we use this to filter occlusions for processing the training set; otherwise,
we rely on [20] (Sec. 3.2). This acquired image is fundamental to calculating
the expected value yk. We achieve this by employing COLMAP [44] in global
localization mode, where the RGB image is localized against the SfM model.
Subsequently, given the ground-truth pose obtained from the simulator, we as-
sess the error in registering the image against the SfM model, considering both
rotation and translation. In our setup, 3D landmarks are represented by triangu-
lated SIFT features [27]. If this error falls below a predefined threshold, we label
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yk as a positive sample. Otherwise, it is set to negative. This process ensures au-
tonomously the accuracy and reliability of our labeling mechanism, contributing
to the overall effectiveness of our methodology.

4 Experiments

To show the effectiveness of our approach, we conducted different qualitative
and quantitative experiments with simulated data and in real-world scenarios.
We trained our model using 10 different meshes from Habitat - Matterport 3D
[33], and we evaluated the generalization capabilities on 2 different meshes. The
training set includes around 250k camera viewpoints, balancing negative and
positive samples. In contrast, the test set, where we evaluate our approach,
comprises around 92k viewpoints, which are never shown during training and
contain around 70% of negative samples and 30% of positive samples. We train
our best model of the size shown in Tab. 1, with Adam optimizer and learning
rate initialized to 1e-3 for 300 epochs. Taking care of the binning with a grid
of 30× 30, we feed the network with a flattened input containing the projected
landmark in 2D, its depth, or its 3D value. Hence, the total input length is 4220.
All experiments and training were conducted on a machine equipped with an
Intel Core i7-7700K CPU @ 4.20GHz, featuring 8 cores, and a GeForce GTX
1070 GPU.

4.1 Localization accuracy

To assess how accurately our method localizes, we use metrics from the Long-
Term Visual Localization benchmark [41]. Originally designed for outdoor and
large-scale settings, the benchmark defined three accuracy ranges (0.25m, 2° /
0.5m, 5° / 5m, 10°). Since we focus on indoor scenes, we include an additional
finest range (0.05m, 0.4°) to ensure a meaningful evaluation in this environment.
The localization results are reported as the percentage of query images localized
within the four given translation and rotation thresholds for each condition.

In our experiments, we compared our method with Fisher Information Fields
(FIF) [55] and a few other baseline approaches. FIF utilizes Fisher Information
theory, treating the camera as a bearing vector to make information independent
from rotation. A Gaussian Process regression is then applied to determine a
visibility score. As commonly done in information theory [32], FIF evaluates the
information based on the minimum eigenvalue, the determinant, and the trace.

We report all the results in Tab. 2. For baselines, we employed random sam-
pling and reprojection with bins. In the first, we select the target viewpoint
randomly, based on the distribution of the test set. In the reprojection with
bins approach, we choose the viewpoint that maximizes the number of binned
features, ensuring a uniform distribution of features in the image.

Compared to existing methods like FIF, the main advantage of our approach
is that it allows multiple camera viewpoints to be considered “good” at each map
location. This flexibility means that during planning, one can select the camera
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Method 0.05m, 0.4° / 0.25m, 2° / 0.5m, 5° / 5m, 10°

random 54.7 60.9 60.9 61.1
FIF mineig exact 60.1 67.7 69.0 69.6

FIF mineig app 57.3 64.7 66.2 66.4
FIF mineig GP app 59.8 65.4 65.7 66.8

FIF det exact 59.2 65.4 66.2 66.2
FIF det app 60.7 67.5 69.1 69.4

FIF det GP app 58.8 67.0 67.1 67.2
FIF trace app 55.4 61.1 61.8 62.0

FIF trace GP app - - - -
FIF trace appr worst 17.8 23.3 23.3 23.3

FIF trace appr zero deriv labels 12.5 16.7 17.3 17.3
FIF trace exact - - - -

reprojections with bins 68.7 71.7 71.7 71.9
proposed 72.9 80.4 81.2 81.7

Table 2: Quantitative results. The localization score values [%] on a test set of
around 92k camera viewpoints, calculated following the Long-Term Visual Localization
[41] benchmark with the addition of the finest scale to target specifically our indoor
setting. We compare against FIF [55] using multiple modalities to evaluate the Fisher
information matrix, random, and reprojection with bins. The proposed approach leads
to the most accurate results. The fact that the proposed method, relying on point
reprojections grouped into bins, significantly outperforms FIF demonstrates that the
distribution of landmarks is more important than evaluating the Fisher information
matrix in visual localization.

viewpoint that offers the most convenience—such as the shortest path—or the
best balance between accuracy for localization and planning convenience. In
Fig. 7, we show how predicting multiple viewpoints for each camera impacts
the localization score of the Long-Term Visual Localization benchmark [41].
We specifically experimented with 1, 5, and 10 best directions for each camera
location.

4.2 Planning experiment

We assess the planning quality qualitatively. For 3D planning, we utilized RRT*
[19], a planner that iteratively grows the tree by sampling random configurations
in the configuration space, with our state represented as SE(3). In our planning
comparisons, we used Fisher information fields and a classic camera look-forward
approach. During experiments, FIF fails to predict some viewpoints, resulting in
a failure state. The conventional camera look-forward approach is a traditional
method that overlooks the consideration of active viewpoints, and its drawbacks
become evident as it fails to adjust the camera towards regions with higher
landmark density, potentially pointing towards featureless areas. In contrast,
our approach achieves meaningful planning, directing the camera towards regions
with higher landmark density. These qualitative results are depicted in Fig. 5. We
specifically use a noisy SfM model to show the robustness and adaptability of our
approach, reflecting real case experiments. The SfM model has been generated
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(a) Forward-facing camera (b) FIF [55] (c) Ours

Fig. 5: Qualitative planning experiments with self-recorded data. In this setup, FIF
encounters challenges in predicting certain viewpoints, leading to failures in our plan-
ner. The conventional camera look-forward approach, a traditional method, neglects
the consideration of active viewpoints. Its limitations become apparent as it neglects
camera adjustments toward regions with higher landmark density, potentially directing
it toward featureless areas. We specifically use a noisy SfM model to show the robust-
ness and adaptability of our approach, reflecting real case experiments.

using only sparse COLMAP [44] reconstruction, without given poses, using only
a set of images as input. We used markers to retrieve the original scale.

4.3 Runtimes
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Fig. 6: Runtimes of our GPU
sampling method compared with a
single-threaded CPU implementa-
tion. These experiments are done
by sampling from 648 camera lo-
cations with 24919 3D landmarks
from the SfM model.

We adopt a simple model to learn the ac-
tive camera viewpoints to make inferences
promptly, designed for dedicated devices and
robotics. Although a complete map represen-
tation can be pre-generated, during motion
planning or localization, one can simply query
the hash table based on the map location. One
inference step of our model takes around 0.02
seconds with our setup. In addition, given the
exhaustive approach adopted to subsample
good camera viewpoints described in Sec. 3.1,
and given the independence of each camera
viewpoint, we make our implementation in
CUDA leveraging parallelism.

In Fig. 6, we illustrate the runtimes of our sampling compared to a single-
threaded CPU implementation, presenting the plot in log scale for clarity. Nu-
merically, the GPU implementation completes the initial sampling in around
23 seconds, while the CPU implementation takes approximately 7387 seconds.
These experiments involve sampling from 648 camera locations with 24919 land-
marks from the SfM model.
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5 Ablation Study

Within this study, our primary focus is on extracting valuable insights from
environmental geometry to advance active visual localization. For this, we in-
troduce a data-driven approach employing a compact architecture designed for
real-time operations, a novel self-supervised training method, the development of
a unique map representation allowing specific voxel locations in space to possess
one or more active viewpoints, and the possibility to integrate motion planning
for robotics applications.

The discrete map representation presented in this work using a voxel grid,
parameterizing each camera location as a voxel, is similar to the one proposed
in [54]. The main difference is that within our active viewpoint selection, the
independence of each viewpoint in the classification process allows the possibility
of selecting more camera viewpoints for each voxel location. This makes things
easier during motion planning, for example, because the planner can rely on the
viewpoint in the location that minimizes the cost concerning its current state
(i.e. shortest path). How predicting multiple directions within our methodology
from each camera location impacts the localization score is analyzed in Fig. 7.

The results obtained in our experiments demonstrate how the distribution of
observed landmarks in the image impacts visual localization tasks. This seems
more important than exploiting the Fisher information matrix, which usually
gives more importance to the vicinity, generally maximizing visibility, without
considering the distribution of the observed map in the image.

In our experiments, we investigated how incorporating various types of in-
formation affects the quality of viewpoint selection. We explored scenarios with
only 2D visible landmarks and introduced the full 3D landmarks (in relative
camera frame) or only their depth. The detailed results are presented in Tab. 3.
Notably, 3D information significantly enhances our model’s accuracy. In general,
depth information alone is sufficient to achieve good results. While incorporating
the full 3D geometry can improve performance, it may also lead to overfitting,
likely due to data quality issues or its limited usefulness for generalization.

We evaluated our model through quantitative testing on simulated data
(Tab. 2) and qualitative analysis on real data (Fig. 5). It is worth noting that
our approach never explicitly generates a complete RGB image during training
(it is used just to calculate the expected value for supervision). Instead, it re-
lies solely on geometric information, making it independent of specific digital
details encoded in RGB images. This characteristic significantly enhances the
model’s generalization ability, enabling transitions from photorealistic simulated
data to real-world scenarios. This capability is demonstrated in the planning
experiments conducted with real data illustrated in Fig. 5.

We specifically use a simple MLP encoder since it does not require any pre-
processing, unlike, for example, a Graph Neural Network (GNN), where a graph
for each sample must be created, or a Convolutional Neural Network (CNN),
where the full image should be convoluted. Also, training and inference are fast.
While more complex models might offer better accuracy, exploiting the corre-
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Fig. 7: Multiple viewpoints results. This figure demonstrates the impact of pre-
dicting multiple viewpoints on localization score according to [41], experimenting with
1, 5, and 10 directions per location. Compared to methods like FIF, our approach’s
main advantage is allowing multiple “good” camera viewpoints at each map location.
This flexibility lets planners choose the most convenient viewpoint, such as the short-
est path or the best balance between localization accuracy and convenience. In this
experiment, we collected all the predicting viewpoints for each camera location, sorted
the likelihood output from the MLP encoder in descending order, and took the best N
elements for evaluation.

lation between landmarks, we aim to keep the approach simple to enhance its
adaptability to real conditions.

approach 0.05m, 0.4° / 0.25m, 2°/ 0.5m, 5° / 5m, 10°

ours (pts 2d) 70.2 75.7 76.2 76.2
ours (pts 2d + z) 74.6 80.3 80.4 80.6

ours (pts 2d + pts 3d) 72.9 80.4 81.2 81.7

Table 3: Impact of different geometrical information in our viewpoint selection
strategy. We examined situations first with only 2D visible landmarks, then introduced
landmark depth (along z -camera axis), and finally, considered the full 3D points. In-
tuitively, the 3D data improves localization scores compared to 2D-only cases. Local-
ization score according to [41] is reported in %.

6 Conclusion

This paper explores active localization, highlighting viewpoint selection’s crucial
role in refining localization accuracy. Our contributions involve a data-driven ap-
proach with a simple architecture designed for real-time operation, introducing a
self-supervised data training method. We show the capabilities of our viewpoints
map to be integrated into a planning framework for robotics applications. We
conducted both qualitative and numerical experiments on simulated and real
data. Our results demonstrate the performance of our method compared to ex-
isting solutions for similar challenges, proving its effectiveness. For the future,
we envision a more robust model, developed ad-hoc for selecting the best camera
viewpoints and an active localization benchmark to benefit the community.
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