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Abstract. In this paper we present a text-conditioned video resampler
(TCR) module that uses a pre-trained and frozen visual encoder and
large language model (LLM) to process long video sequences for a task.
TCR localises relevant visual features from the video given a text con-
dition and provides them to a LLM to generate a text response. Due
to its lightweight design and use of cross-attention, TCR can process
more than 100 frames at a time with plain attention and without op-
timised implementations. We make the following contributions: (i) we
design a transformer-based sampling architecture that can process long
videos conditioned on a task, together with a training method that en-
ables it to bridge pre-trained visual and language models; (ii) we identify
tasks that could benefit from longer video perception; and (iii) we empir-
ically validate its efficacy on a wide variety of evaluation tasks including
NextQA, EgoSchema, and the EGO4D-LTA challenge.
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1 Introduction

The development of visual-language models (VLMs) advanced exponentially in
the past few years: new models pre-trained with increasingly larger scale, in
terms of the number of parameters and size of the training set, continue push-
ing forward the state of the art on multiple tasks every couple of months. These
models often have the ability to reason about the relationships of objects in their
environment through natural language, often in an interactive fashion. This ca-
pability is appealing for multiple video applications. For example, it would be
helpful for a model to be able to answer questions about a video: “Does this
recipe use eggs?”, “what does he do after he removes the tire?”, etc. It is also ap-
pealing for users of augmented-reality devices: for example to be able to answer
“where did I leave my phone?”. Unfortunately, the computational requirements of
such models made them impractical for use in video applications as the memory
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Text-Conditioned Resampler (TCR)

VQA
What happens between 
7th and 9th second?

Moment Query
When did I start to 

knit? 

Action anticipation
What happens after?

Up to 100 input video frames

What does the man do after 
finishing cleaning the ferret?

Use towel to dry the ferret.

Fig. 1: TCR resamples visual features that are relevant for the downstream tasks before
passing them to the LLM. A qualitative example can be seen on the right.

requirement rises quadratically with the input size. Furthermore, to our knowl-
edge, a large-enough source of even loosely labelled video data for training such
a model from scratch does not readily exist.

That is why we are specifically interested in a subset of these models that
are not trained from scratch, but rather ‘bridge’ pre-trained models via different
types of ‘visual-to-language adapter modules’ [1, 25, 35]. The advantages of this
approach, as opposed to training the model from scratch, are numerous: Only
a small number of parameters are trained, which makes the memory footprint
smaller; it allows us to utilise the capabilities of large visual backbones without
overfitting to the downstream task; as well as to leverage the vast amount of
knowledge stored in the LLM without suffering common limitations of smaller-
scale fine-tuning such as catastrophic forgetting. Only a few of these models are
trained on videos [1,24,54], and these can usually ingest only a small number of
frames – typically anywhere between 4 to 32. Allowing a large number of video
frames to interact with text is demonstrably beneficial [29,35] in visual models,
thus, a relatively simple way of increasing the model performance is to increase
the number of frames the model sees.

In this paper we present a Text-Conditioned Resampler (TCR), an architec-
ture and pre-training method that tackles all of the challenges mentioned above:
it is a reasonably lightweight, low-dimensional adapter which acts as an infor-
mation bottleneck between visual and language models. As shown in Figure 1
(left), it is able to process over a 100 (and up to 180) frames at a time, selecting
the most relevant frame features to pass to the LLM based on the “conditioning”
text. TCR allows us to focus on analysing videos with longer temporal span,
and identify gains that could be made on longer videos. Right side of Figure 1
illustrates an application of our model. This new method allows us to analyse
aspects of video datasets we’ve never been able to before. Specifically, we were
able to look at how many frames it takes for a VLM to solve a task, and to
determine if increasing the temporal span of perceived video actually brings
benefits in terms of performance. We found that increasing temporal span does
improve results on the moment-queries EGO4D challenge, and allows us to set
the state-of-the-art (SOTA) on long-video question answering on the validation
sets of EgoSchema dataset [29] and EGO4D long-term forecasting challenges, as
well as on the temporally-sensitive NextQA dataset [48].
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Fig. 2: Left: overview of how TCR integrates in a VLM in order to process long videos.
A long (30-120 frames) sequence from a visual encoder (V) is resampled to a fixed-
length sequence fed to a language model. [CPN] indicates special token for captioning;
[7][9] is a representation of tokenised time steps. Right: details of the TCR module.
Elements in blue are kept frozen. Best viewed in colour.

2 Text-Conditioned Resampler (TCR)

In the following section we describe the model and the training procedures used
for training a video-specific VLM able to handle very long video sequences.

2.1 Model

At a high level, the input to the TCR consists of video frames processed by a
visual encoder and embedded text tokens. It outputs a fixed-length sequence
of embeddings that, together with a text prompt, is consumed by a language
model. The text specifies (conditions) the task, and the TCR selects different
visual features according to the task and transforms them to be suitable for input
to the language model. Finally, the language model generates the text response
to the specified task. Architecture overview is given in Figure 2 on the left.
Overview: The visual inputs consist of RGB frames of the video that are in-
gested by a pre-trained frozen ViT-g [38] model to obtain visual embeddings.
Temporal encodings are added to them. The conditioning text tokens are pre-
fixed with a learnable special token specifying the task the model is trying to
solve and concatenated with a set of learnable query vectors. The queries and
text interact with each other through self-attention layers, and interact with
the frozen visual features through cross-attention layers (inserted every other
transformer block). Output query vectors are then concatenated with an op-
tional text prompt, and passed through a frozen Flan-T5 language model [9].
The TCR module is illustrated in Figure 2 on the right. We treat it as a plug-in
replacement for the Q-former in the BLIP2 [25] architecture to enable handling
of very long frame sequences as input.

The key design choices are: (i) the interaction of the query sequence with the
visual features is only through cross-attention. This enables the TCR to ingest
very long sequences (as it is not limited by the quadratic complexity of vanilla
self-attention); and (ii) the output is a fixed length set (the transformed query
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vectors), so that the input to the language model is only a small number of
tokens, irrespective of the length of the video sequence. Following these design
principles we are able to significantly reduce the number of input tokens that the
LLM needs to process with obvious gains in terms of inference time and memory
requirements compared to full self-attention over all frame tokens.
How does the TCR differ from the Flamingo Resampler and Q-former?
These design decisions build on the architectural innovations of the Perceiver re-
sampler in Flamingo [1] and the Q-former in BLIP-2 [25]. However, there are a
number of differences: (i) While Q-former is trained on images, TCR is optimised
for video from the ground up – all training stages are done on videos. This is
important as the TCR must learn to sample visual features from video frames
conditioned on the task. (ii) TCR uses lower dimensional features than either
Q-former or Perceiver Resampler (512 vs 768 vs 1536) and an overall smaller
number of parameters (69M vs 188M). This is important as it allows us to pro-
cess far longer video sequences. (iii) While TCR cross-attends visual features to
text embeddings and learnable queries, Perceiver Resampler concatenates visual-
embeddings and queries in a key-value pair, which makes the computation more
expensive as it computes cross-attention and self-attention in a single pass. We
keep the operations separate (i.e. first cross-attending text-query sequence with
the video, and then self-attending the text-query sequence). This reduces per-
layer computational requirements allowing us to increase video sequence length.
These differences lead to a novel capability of processing many more frames at
once, which subsequently leads to superior performance on downstream tasks.
Conditioning sequence construction: Most tasks can be represented as a
basic Question and Answer (QA) pair. Inspired by multi-task language mod-
els [33], we adopt a generic [ST][task prompt][learnable query] input
structure (where [ST] is a task-specific special token, [task prompt] is,
for example, a question in a QA, and [learnable queries] are passed on to
the LLM). We prefix a special task token ([CPN], [TRG], [QA], [STG]) for cap-
tioning, temporal grounding, question-answering, and spatio-temporal grounding
respectively) to the task prompt, depending on what task the model is solving.
Figure 2 shows an example wih the [CPN] task-specific special token. Since, in
principle, all tasks can be formulated as QA (and would be specified in the model
as [QA][question text]), why are special tokens used? We found that using
tokens improves overall performance while making the model easier to train and
reducing the sequence length required for conditioning the sampler (as opposed
to spelling out the task in text).

2.2 Training

Recent works have shown that contrastive learning yields visual representations
for video frames that perform better in discriminative tasks than training in a
purely generative fashion [24, 53]. Training models with a generative loss, how-
ever, seems to be crucial for developing reasoning regarding temporal grounding
of unconstrained videos as well as the semantic relationship between text struc-
ture and video [1, 50]. Hence, we separate our training in three distinct stages:
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Table 1: Effect of initialisation and pre-training stages on NextQA question answering
and NLQ task. For NextQA, we use shortened fine-tuning procedure (see Section 3.2)
and vary the checkpoints used. For NLQ, we evaluate on TCR w/LLM.

Init Pre-training NextQA
Acc ↑ NLQ

MR@1 ↑(i) (ii) (iii)

✓ ✓ ✓ ✓ 66.1 11.42

✓ ✗ ✗ ✗ 52.1 7.88
✗ ✓ ✓ ✓ 63.3 9.41

✓ ✓ ✗ ✗ 64.1 8.94
✓ ✓ ✓ ✗ 65.6 9.37
✓ ✗ ✓ ✗ 63.4 8.91
✓ ✓ ✗ ✓ 64.2 8.13

(i) initialisation, where we train TCR without the LLM; (ii) pre-training, where
we train TCR in conjunction with the LLM; and later, (iii) a task-specific fine-
tuning. Note that the only thing we’re training is the TCR module – the vi-
sual encoder and LLM remain frozen throughout. Initialisation and pre-training
stages are done on the YTT-1B dataset [50]. Videos in this dataset are anno-
tated by the transcribed speech sentences and their corresponding timestamps
that are either user-generated or automatically generated via automatic-speech
recognition. Speech in such videos is rarely visually grounded [16, 22], however,
because our model can see the video sequence surrounding the annotated seg-
ment, it is well suited to implicitly learn the temporal grounding. We describe
training stages below.
Initialisation (without LLM): To initialise our model, we follow BLIP2 [25]’s
image-text contrastive and image-text matching objectives. Contrastive objective
maximises mutual information between TCR text output, and learnable queries
which are cross-attended with a video. Text and learnable queries are passed
together to TCR. Their mutual attentions masked in such a way that text only
attends to itself, while the learnable queries are cross-attended to the video
frames and then self-attended to themselves. We compute the average of text
queries to get a text representation t, and compare it pairwise with all learnable
queries. Query with maximum similarity to t is denoted as q. We then align the
representations t and q by contrasting each positive pair with in-batch negative
pairs. At this stage TCR is not text conditioned. Image-text matching objective
(video-text matching in our case) primes the model for text-conditioning. Both
learnable queries and text are passed through TCR together, without attention
masking. A binary classifier predicting whether the video and text are matching
or not is applied to each of the learnable queries and predictions are averaged to
obtain a final matching score. The negatives are sampled in-batch, following [25].

We skip the generative training step of [25], as our model is neither designed
nor initialised from a language model, and we found no measurable benefit from
this training stage. The reader is referred to the original paper [25] for in-depth
description of attention-masks and losses used during each of the objectives.



6 B. Korbar et al.

Pre-training (with LLM): The goal of pre-training is twofold: first, to se-
mantically and temporally align TCR’s output with the expected input of the
LLM, and second to train TCR’s self-attention layer to attend to specific task-
specifying special tokens and text conditioning tokens. We do this by training
it on three tasks. (i) given an untrimmed video and annotated sentence, we ask
it to retrieve when the sentence occurred; (ii) given the untrimmed video and a
timestep, we ask the model to fully caption that particular segment; (iii) given
the untrimmed video and a text sequence corrupted in multiple ways, we ask it
to correct the sequence. All tasks are supervised by applying the generative loss
on the outputs of the LLM. The examples of these tasks on an example from
YTT dataset can be seen in the supplementary material. The effects of these
training stages can be seen in Table 1.
Fine-tuning: After these two stages, TCR achieves competitive results on
downstream tasks while still being a generalist model. However, as our pre-
training dataset is comprised mostly of low- and mid-quality videos with noisy
automatic annotations, we observe significant improvements through fine-tuning
for a specific task. The goal of fine-tuning is to align the TCR with the domain of
the downstream task in question. Only the TCR module and its vocabulary are
fine-tuned, while the visual encoder and the LLM are kept frozen. Fine-tuning
is performed on each of the downstream datasets and is described in the results
section for each dataset, while hyperparameters and ablation of the performance
with or without fine-tuning are given in the supplementary.

2.3 Model details

Video sequence construction: We extract visual representations (14 × 14
patches from frames with 2242 resolution) using ViT-g [38], and add temporal
embeddings. In order to reduce memory consumption, for every other frame we
drop random 50% of its patches. Recent work [17, 40] has shown no significant
loss in performance when random patches have been dropped.
LLM sequence construction: We follow BLIP2 in the way we construct the
input sequence [25]. We concatenate the output of the TCR module together with
a <BOS> (beginning of sentence) token and the instruction context tokens (for
example question in VQA, or previous action sequence together with instruction
for EGO4D action prediction).
TCR architecture details: TCR is based on a transformer-decoder mod-
ule [42], consisting of 4 transformer blocks with 8 attention heads and hidden
dimension equal to 512. Blocks 0 and 2 contain cross-attention layers. For each
task we use 128 512-dimensional queries. These choices were tuned based on the
downstream performance on NextQA validation set and then kept fixed.

3 Experiments

In the following section, we conduct a set of experiments with a baseline VLM
and TCR in order to determine which tasks benefit from having access to longer
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or denser video sequences, and compare the results to the SOTA. Specifically,
we analyse the datasets in section 3.1. We compare the results to the state of
the art in sections 3.2, 3.3 and 3.4, and we present ablation of model decisions
in section 3.5. Qualitative results can be seen in Figure 4.
Datasets: We evaluate the following datasets: Kinetics400 [21] containing around
260k 10s videos with human-action labels and Countix, a subset of Kinetics
where actions are annotated with the number of repeats (e.g. how many time
a push up is repeated) [12]. MSR-VTT [49], a large scale video captioning
dataset. NextQA, a manually annotated video-question-answering dataset where
the model is asked to answer questions regarding temporal actions in a multiple-
choice fashion [48] from (on average) 44s long videos. Finally, since egocentric
videos are a new frontier in effective long-term video understanding, we evaluate
on two diverse challenges from EGO4D [15]. EGO4D videos are often minutes
long, containing both fine-grained actions as well as long-term interactions [15].
Baseline: We use a fixed BLIP2 [25] VLM as a baseline throughout our ex-
periments. BLIP2 is not trained on videos, but it has been shown that it can be
adapted to videos [53,57] and we follow [53] to do so. BLIP2 can only process up
to 8 frames at a time, so for the task where it can be done, we average predictions
over multiple 8-frame video clips extracted at 1fps (noted as ‘BLIP2(Avg.)’).
These aggregation methods, however, can introduce unwanted noise [23,35].
Modelling longer sequences: The design of TCR allows a VLM to “see” more
frames than ever before. Therefore, we also present results using TCR which uses
the same visual encoder and LLM as BLIP2 but is able to process all the frames
at once. With TCR, each video can be processed in a single forward pass thus
eliminating the effects of subsampling or averaging.

3.1 Video task analysis

Since videos are a highly redundant data-source, one has to ask how many frames,
and at what sampling rate, does the model actually need to see to achieve good
performance. For example, it has been observed that humans solve QA tasks with
8% higher accuracy when videos are sampled at 25fps as opposed to sampling
them at 1fps [29]. In this section, we analyse the results on six common video-
understanding tasks with respect to the number of frames consumed by the
model. We look at the results from a high-level perspective, in order to determine
which tasks will require higher number of frames for a model to solve. Overview
of the results can be seen in Figure 3. BLIP2 and TCR models are initialised
from the same checkpoint, and then finetuned on the downstream task using the
target number of frames as an input. We describe evaluation procedure for each
task in more detail in their respective sections.

Intuitively, question-answering is one of the tasks where longer spans and
better understanding of temporal dependencies would be of utmost importance.
On the NextQA dataset, where questions contain temporal aspects (3a), seeing
the span of an entire video seems to be crucial for performance. There is a clear
peak at about 2fps, and a sharp decline past 1fps. This means that it is important
to observe most of the frames, but frame density is not strictly required.
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Fig. 3: Performance vs number of frames utilised by the models on various dif-
ferent tasks. t denotes average length of the video in the dataset. ‘tcr’=Ours,
‘iv’=IntenVideo [45], ‘TF’=TimesFormer [2], ‘b2’=BLIP2 [25], ‘sevilla’= [54], Rep-
Net= [12]

Curiously, although long video sequences at higher frame-density are required
for humans to solve problems in EgoSchema dataset (3b), most models’ perfor-
mance actually peak or plateaus at significatly smaller number of frames [29].
We argue that this is because they have not been trained with long input length,
and subsequently fail to capture semantic interdependencies within the video.
TCR’s performance increases with the number of frames, but plateaus when
more sparsity in frame patches is needed to keep memory consumption down
(see Table 3 for more details). We believe that being able to see the span of
entire video with more density (i.e. at sampling rates greater than 1fps) could
further increase performance on this benchmark.

Human action recognition (3c) and short-video captioning (3d) are com-
monly used video-understanding benchmarks, however, we found that they do
not require many frames to achieve strong performance with a VLM. On action
recognition, specialised models such as [2] scale better with higher frame density,
however, which can be attributed to their to inherently learned sampling [23].
This intuition can be corroborated by a slight performance increase when using
TCR module with BLIP2. Future prediction tasks (3e) on egocentric videos of-
ten span a long temporal range. We found that increasing the number of frames,
hence covering larger video spans, helps in reducing the overall error. This is not
unexpected, as action sequences in EGO4D tend to be repetitive, so the longer
sequence of actions allows the model to recognise the action pattern from more
samples. Finally, counting (3f) is an example of the task where frame density
matters, and performance drops when fewer frames are utilised from a fixed
length video. It also requires specialised architecture to solve it [12], and LLMs
are traditionally disadvantaged in tasks that require numerical reasoning. For
action classification and counting problems, we only use visual and aggregator
parts of the VLM as described in the supplementary.
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To conclude, although the tasks that require the models to be able to reason
over many frames either in span or density are fairly limited, they do exist.
Below, we show how a module such as TCR that allows us to ‘see’ more frames
in context could be beneficial to overall performance on these tasks.

3.2 Evaluation on video question-answering

We first evaluate our model on question-answering benchmarks, our prior exper-
iment shows a clear benefit when more frames are observed. We use the NextQA
validation set to compare our model to the current state-of-the-art model which
is also based on BLIP2 architecture [54]. We follow fine-tuning and evaluation
protocol from [25], with hyperparameters outlined in the supplementary.
Input design: Video is subsampled to a target numbers of frames (92 frames at
approximately 2fps for the final model), and temporal embeddings are computed
accordingly. Conditioning text is formed as “[QA] Question” where [QA] is
learned special token reserved for VQA tasks. During fine-tuning, the prompt to
the LLM is formed following [54] as: “[vis. features][question][options]
Considering information in frames, select the correct answer”.
Evaluation procedure: During inference, we restrict generation to the answer
vocabulary (i.e. “Option A”, “Option B”, ...), and select the most probable answer.
Comparison to SOTA: Results can be found in Table 2. Our model outper-
forms BLIP2 which demonstrates that the TCR module is successful in selecting
the relevant frames, and also indicates the need for temporal modelling of this
particular task. While like us, the SeViLA model is based on BLIP2, they train
one model to sample relevant keyframes, and a separate model to solve the task
from the sampled keyframes, effectively doubling the number of trainable pa-
rameters. In contrast, TCR requires only a single forward pass during training
to both sample the features and solve the task. Our model outperforms SeViLA
in overall accuracy (setting the new SOTA), hence showing that number of ob-
served frames makes up for lack of trainable parameters.

Table 2: Comparison to SOTA on NextQA dataset. Results are split into non-balanced
‘causal’ (C), ‘temporal’ (T) and ‘descriptive’ (D) questions. The overall accuracy in the
last column to the right is balanced across the entire dataset, rather than across the
categories. ‘*’ denotes re-implementation by [35]

Model train params accC ↑ accT ↑ accD ↑ acc ↑

SeViLA [54] 346M 73.4 68.8 83.5 73.4
HiTeA [51] / 62.4 58.3 75.6 63.1
BLIP2 [25] 188M 64.9 59.7 77.8 63.5
2* [25,35] 188M 72.9 65.2 80.1 70.1
Ours 76M 73.5 69.8 82.2 73.5



10 B. Korbar et al.

Table 3: Comparison to SOTA and human performance on EgoSchema split of
EGO4D. × denotes multiple forward passes were used. * denotes higher proportion
of patches was dropped.

Method Observed
frames

QA
acc (%) ↑

InternVideo [7] 8×11 32.1
BLIP2 [25] 8 27.2
BLIP2 [25] 8×12 29.9
TCR (ours) 92 34.2
TCR (ours) 92×2 34.5
TCR (ours) 184* 35.1

Human 180 67.2

3.3 Evaluation on long-form VQA

EgoSchema is a long-form VQA dataset sampled from EGO4D containing 5000
human curated multiple choice question answer pairs, spanning over 250 hours of
real video data. Each question requires the model to select one out of 5 possible
answers and is accompanied by a three-minute-long video clip [29]. Input and
evaluation designs are the same as they are for NextQA.
Comparison to SOTA: Results can be seen in Table 3. Our model outperforms
both the SOTA models (where inference was done over multiple forward passes
and prediction was averaged) and our re-implementation of BLIP2 (with both
subsampled frames and iterative inference approach). Similar to [29], we observe
relative saturation of performance with increasing the number of frames.

3.4 Evaluation on EGO4D challenges

Long-term action anticipation (LTA): The goal of the LTA challenge is to
predict a sequence of twenty actions in order of appearance from an input video.
The last observed action and action boundaries are given as well. The current
state-of-the-art method relies solely on the power of large-language models in
order to predict the sequence of future actions [18]. Our model adapts this idea
but leverages the ability of TCR to process increasingly longer videos in order to
achieve superior results. We compare our model to the SOTA, as well as to fine-
tuned BLIP2 using 8 frames as video input. We note that our model outperforms
BLIP2 by a significant margin, clearly showing the benefits of being able to
observe denser video sequences for this task. Results can be seen in Table 4.
Input design: We construct input for fine-tuning and evaluation in the following
fashion: video is subsampled uniformly to a target number of frames (8 for BLIP2
with Q-former, and 96 for BLIP2 with TCR) and temporal embeddings denoting
the frame timestamp are added to them. The text prompts are designed as:

Complete an ac t i on sequence ,
an ac t i on i s one ( verb , noun ) pa i r .
A complete sequence c o n s i s t s o f 28 a c t i on s .
Act ions : (noun_1 , verb_1 ) ( verb_2 , . . .
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and for the conditioning prompt we use:

[LTA] [ start_1 ] ( noun_1 , verb_1 ) , [ start_2 ] ( noun_2 , verb_2 ) . . .

where (noun, verb) is an action pair, [LTA] is a learned special token, and
[start k] is a tokenised start time of k-th action.
Evaluation procedure: Our evaluation procedure follows closely those of [18].
The model is fine-tuned to output comma-separated action pairs following the
prompt formatting. During the evaluation, we softmax predictions over the re-
duced vocabulary of the label space for the LTA task. If both nouns and verbs
fall into their respective label space, we append them to our prediction. For pre-
dictions with less than 20 action pairs, we pad it with the last action. Models
denoted with (*) are sampled in an iterative fashion.
Comparison to SOTA: Table 4 shows the comparison to the state-of-the-art
on long-term action prediction. Note that SOTA [60] uses various pre-processing
methods in addition to the language model to predict the future actions. We
use a single model. We find that iterative evaluation (i.e. asking the model to
predict action by action, as opposed to the whole set of 20 actions is beneficial
for the performance. Results can be improved by observing the (given) frames
after the target time (See Tbl X in the supplementary).

Moment queries (MQ): The MQ task is similar to temporal action locali-
sation or moment retrieval tasks. Given a textual description of an action, the
goal is to localise all possible instances of it in the given video clip. Results can
be seen in the Table 5.
Input design: Video is subsampled uniformly to the target number of frames,
and temporal embeddings denoting the frame timestamps are added to it. The
conditioning prompt is formed as “[TRG] action query string” where [TRG]
indicates the special token for temporal grounding and action query string
denotes the name of the action label parsed as a string. The language model is
prompted by the following string

Return a sequence o f frame timestamps
where <act i on name> i s happening . The
timestamps range from 1 to 1000 .

Table 4: Comparison of various models on the validation set of EGO4D LTA challenge
(v2). Edit distance is reported and the lower the score the better. Models denoted with
‘*’ are sampled iteratively. We use official implementation of [60] on v2 split.

Method VerbED ↓ NounED ↓ ActionED ↓

PALM* [18] 0.7165 0.6767 0.8934
AntGPT* [60] 0.7083 0.6895 0.8826
BLIP2 [25] 0.7512 0.6873 0.9103
Ours 0.7009 0.6472 0.8792
Ours* 0.6982 0.6441 0.8704
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Table 5: Comparison to the state of the art on the validation set of Ego4D Moment
Query Challenge.

Method Avg. mAP ↑ R@1, tIoU=0.5 ↑

Intern Video [7] 23.59 41.13
ASL [36] 27.85 46.98
Ours (96f) 24.51 42.99
Ours (192f) 25.45 43.72

Evaluation procedure: We softmax the model predictions from a reduced vo-
cabulary of integers from 1 to 1000 (temporal coordinates are quantised similarly
to [8]) and aggregate them.
Comparison to SOTA: Results in Table 5 show that despite the disadvantage
of solving a discriminative task in a generative way, our model still performs
admirably (-2.4 MAP) when compared to the state-of-the-art. In the supple-
mentary material, we present an additional evaluation procedure (using direct
classification) which can yield even better performance (+1.25 MAP).

3.5 Model design decisions

In the following section we investigate our model choices and seek to explain
their impact on the performance of our model. All experiments were done on the
validation set of NextQA dataset and results can be seen in Table 6. Note that
we fine-tune the model on a shorter training schedule which yields lower results,
but allows for a quicker turnaround. We keep the same fine-tuning parameters
for all ablation studies.
Does text conditioning impact the results? We investigate the performance
of our model in three different scenarios: (1) when the conditioning prompt is
unchanged in the evaluation setting, (2) we completely remove the conditioning
prompt, and (3) we modify the temporal word (‘before’ to ‘after’ and vice-
versa) in a hope to confuse the model. The results can be seen in Table 6a.
Conditioning indeed allows the TCR module to extract more relevant features
(+3.8). Furthermore, adversarial conditioning greatly impacts the performance
of the model (-7.6).

Table 6: Ablation studies on validation set of the NextQA dataset. Note that the
ablations were done on a short training schedule.

cond. acc ↑

yes 64.9
none 61.1
corrupt 55.3

(a) Different condi-
tioning prompts on
temporal-question set
only.

#frms acc ↑

32 64.4
92 66.2
124 65.9

(b) Impact of number of
frames on model perfor-
mance.

#queries acc ↑

32 62.7
64 65.8
128 66.2
256 64.3

(c) Impact of the total number
of queries on model performance.
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What is the cat wearing around its 
neck?

The cat is wearing a plastic cone.

List timestamps when the person is 
browsing through clothing items on 
a rack.

1,7,8,9

What is in the video between 8th 
and 10th second.

A Newfoundland Railway locomotive 
number 59.

What is the main objective of Cs 
actions throughout the video, and 
how does it change, if at all?

C’s goal is to clean the wall.

Fig. 4: Examples of our model responding to various textual prompts taken from
NextQA, EGO4D-MR, and YTT datasets. The opacity of the images in the second
row is correlated to the mean patch attention score for that frame. Note that frames
are subsampled and the TCR conditioning is not included for clarity.

Do we need special tokens for conditioning? If the model is fine-tuned
for a specific task without the special tokens, it still performs reasonably well
(73.5% vs 72.7% acc on NextQA with and without special tokens respectively).
Does the number of frames matter? The input video-sequence length is
important to the model performance. In Table 6b we show the performance
dependence on the input sequence length. Note that videos are on average 44s
long, thus 124 frames equates to sampling at a rate of 2.5fps.
How many queries should the LLM see? While there is a benefit of per-
ceiving a longer length of a video input-sequence, it has been observed that
including more visual tokens as input to the LLM does not lead to a better per-
formance [54]. Therefore in Table 6c we investigate how many queries the LLM
should observe. Reducing the number of queries to a total of 128 (equivalent to
four frames according to [25]) achieves optimal performance.

4 Related work

Our work spans many fields of video-understanding and we outline the most
relevant related work below.
Video-sampling techniques: Sampling relevant frames from videos has long
been a challenge in video understanding due to the highly redundant nature of
video data. These methods either use a pre-processing module [3,6,14,23,46,52,
61] to guide their model through multi-modal attention-like mechanisms [13,31],
or employ recursive reinforcement learning techniques [47] to select relevant parts
of the videos. In temporal action detection, models are tasked with precisely lo-
cating action boundaries. Most commonly used datasets [4,44,59] are dominated
by custom solutions or transformer architectures [36, 56] built upon strong fea-
tures [5, 40,41,43,45].
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Egocentric videos understanding: Extreme length and temporally sensitive
nature of the tasks introduced in EGO4D required researchers to think about
the problem of video-length on a different scale [15,30]. This has already yielded
creative approaches to solve various challenges in the egocentric space [7,20,39].
Also new and exciting benchmarks have been developed: for example the recent
EgoSchema dataset [29], a manually annotated subset of EGO4D where each
QA pair corresponds to a 3 minute-long video. A work particularly relevant
to ours is SpotEM [34], a lightweight sampling mechanism that makes use of
low dimensional features in order to select video segments important for solv-
ing natural-language query challenge . Though impressive in performance, their
method is limited to the type of embeddings used for sampling, and is thus less
general than our approach.
Video-language models and feature resampling: VLMs have revolu-
tionised the field of computer vision – the scale of the models and data they
were trained on increased exponentially in a short period of time [1,19,25,32,55],
some even being jointly optimised for images and video [1,10,24,25]. The length
of the videos these models can process often varies – [1] can process up to 8
frames, [24] can process longer tubelets (at reduced receptive fields). None of
these models can process videos over 16 frames at full resolution outright.
Concurrent works on VLMs for video: Extending capabilities of VLMs
is a fast-paced area of research, and many works have appeared without being
published. [26] conducted an orthogonal study, exploring how the embedding
quality can reduce the amount of visual information necessary for large LLMs.
We on the other hand introduce a bottleneck module to increase the amount of
data processed without increasing complexity. [28] focuses on interactive aspects
by improving the LLM pipeline. We keep the pipeline fixed to seek improve-
ments from the data. [58] increases the amount of information by introducing
additional modalities which would be an interesting next step for our work as
well. Similar to us, [37] aims to increase video length in a BLIP2 model, but
they do so via a memory bank. Combining a memory-augmented approach with
reasoning over longer sequences would be a promising future work. Techniques
like FlashAttention [11] or RingAttention [27] also allow the context window of a
VLM to handle long sequences of frames but at the cost of significant growth in
inference speed. These techniques are complementary to our proposal and could
be integrated in the TCR to support even longer videos in the future.

5 Conclusion

We present a parameter-efficient, text-conditioned module and training method
for bridging video-to-text gap that can be applied to a large number of frames
in videos. Even though our model is entirely based on BLIP2 [25] architecture,
introducing it in other VLMs would be straightforward. We believe that models
capable of perceiving long video sequences such as TCR will open up a promising
new direction in research.
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