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Abstract. Cross-modal steganography is committed to hiding secret
information of one modality in another modality. Despite the advance-
ment in the field of steganography by the introduction of deep learning,
cross-modal steganography still remains to be a challenge to the field.
The incompatibility between different modalities not only complicate
the hiding process but also results in increased vulnerability to detec-
tion. To rectify these limitations, we present INRSteg, an innovative
cross-modal steganography framework based on Implicit Neural Repre-
sentations (INRs). We introduce a novel network allocating framework
with a masked parameter update which facilitates hiding multiple data
and enables cross modality across image, audio, video and 3D shape.
Moreover, we eliminate the necessity of training a deep neural network
and therefore substantially reduce the memory and computational cost
and avoid domain adaptation issues. To the best of our knowledge, in
the field of steganography, this is the first to introduce diverse modali-
ties to both the secret and cover data. Detailed experiments in extreme
modality settings demonstrate the flexibility, security, and robustness of
INRSteg.

Keywords: Steganography · Implicit neural representations · Cross-
modal steganography

1 Introduction

Nowadays, an unprecedented volume of data is shared and stored across vari-
ous digital platforms and the volume is bound to intensify even further in the
future. This proliferation and accessibility of data contributes to convenience
in our lives and enables innovation and advancement that weren’t achievable
in the past; however, it also brings a concerning challenge to the security of
information. Steganography aims to hide the secret information inside a cover
data resulting in a stego data, also called the container. Unlike cryptography,
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which investigates in hiding the data of interest in a coded form, steganogra-
phy operates with imperceptible concealment so that the existence of the secret
data is undetectable. For example, individuals can upload their stego data to
the cloud and securely trade their private keys with specific parties, and com-
panies can leverage steganography to exchange confidential information, such as
new product designs or sensitive meeting recordings, while including ownership
details in the data. From a government perspective, steganography can covertly
transmit information to foreign spies by inserting confidential national security
information into seemingly ordinary cover data.

Up to now, image is the most commonly used modality of cover data, as it is
less sensitive to human perception and is comparatively simple to embed secret
information. However, image steganography tends to have a limit on payload
capacity, and is susceptible to detection. Deep learning methods [1, 30] have in-
creased the security, but suffer from unstable extraction and high computational
costs [20]. Other modalities such as audio, video and 3D shape also undergo simi-
lar limitations [11,29] and struggle with trade-offs between capacity and security.
Moreover, for cross-modal steganography, where the modality of the secret and
the cover data differs [5, 6, 24], these limitations intensify due to the difficulties
that emerge when the dimension or capacity of the secret data exceed that of
the cover data or when the secret data contains temporal information.

Implicit neural representations (INRs) have recently attracted extensive at-
tention as an alternative data representation, using continuous and differentiable
functions to represent data via parameters of a neural network. The concept of
INRs offers a more flexible and expressive approach than the conventional notion
of discrete representations. Multiple modalities, as audio, image, video and 3d
shape, are all presentable using a single neural network in various resolutions [3].
Moreover, INRs benefit in capacity by reducing the memory cost according to
the network design [9, 15].

In this paper, we present INRSteg, the first cross-modal steganography frame-
work available across a diverse range of modalities, including images, audio,
video, and 3D shapes, for both the secret and cover data. By transforming the
representation of all data to an implicit form, our framework takes advantage of
the flexibility and high capacity inherent in INRs. The flexibility to all modali-
ties enables cross-modal tasks that remained largely unexplored. Along with the
versatility across the modalities, our framework is also capable of hiding multiple
secret information into one cover data. In Sec. 4, we conduct the hiding of both
an audio and an video into a single image, a task which was previously consid-
ered highly challenging due to the limited capacity of images. Our framework
therefore further enables expansion and intriguing adaptation of steganography
into a wider range of fields. In the medical field, for example, private information
as an endoscopy video and an audio recording of the heart sound can be hidden
under an image of a patient.

To further enhance the security, layer-wise permutation of the INR network
using a private key is additionally executed. Therefore, the secret INRs’ network
parameters can be well distributed within the stego INR’s network. Revealing
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Fig. 1: A general framework of INRSteg for hiding two types of secret data. All four
data types can be transformed into INRs, and the red box shows which of the four data
types is selected in this case. After the representation transformation of each secret
data, the weights of the two INRs are allocated in a new MLP network. With the
weight freezing technique, the weights from the secret data are fixed while the rest are
fitted on the cover data. The existence of the secret data is concealed by permutation
encoding via private key, which does not affect the reconstruction performance. The
private key is then used to decode the permuted stego network, and the secret data
are revealed by separating each MLP network.

the secret data is executed by re-permuting and disassembling the weights of
the stego INR. This procedure is not only simple but also guarantees a loss-
less revealing process as all neural representations of the secret data are fully
recoverable.

Additionally, our framework does not require any deep learning models to be
trained for the hiding and revealing process, such as GAN [16, 25] or diffusion
models [27]. This excludes the need for any training data and therefore our
framework can prevent any biases that may arise from using training datasets
[12] and avoids domain shift issues, allowing datasets of all modalities to be
applied without any additional pre-processing. Moreover, by eliminating the use
of deep networks, our work substantially reduces both the computational and
memory costs associated with training and deploying models which have become
a significant global challenge.

The proposed framework, INRSteg, achieves flexible cross-modal steganog-
raphy for multiple secret data by converting the data representation to neural
networks. At the same time, we reduce computational and memory costs by
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avoiding the use of deep neural networks. For intra-modal steganography, we
demonstrate that INRSteg outperforms prior image steganography models such
as DeepMIH [4] and DeepSteg [1]. We show INRSteg is robust in the real-world
scenarios by applying quantization operation. These are our main contributions,
and the details will be described in further sections:

• Introduce an Implicit Neural Representation (INR) steganography frame-
work that flexibly adopts to a large range of modalities and further enables
all cross-modal steganography.

• Demonstrate a neural network allocating procedure that enables cost-effective
hiding and revealing of multiple secret data at once.

• Comprehensive investigation on distortion, security and capacity shows that
INRSteg achieves state-of-the-art cross-modal steganography.

• Figure out that INRSteg is the most efficient compared to the previous
steganography models and robust in real-world scenarios especially for quan-
tization operation.

2 Related work

2.1 Steganography

Steganography is a technique that focuses on hiding confidential information by
adeptly embedding data within other publicly accessible data, effectively con-
cealing the very existence of the hidden message. When one is aware of this
concealed data, it can be retrieved by a revealing process with an appropriate
private key [17]. A prominent approach in historical methods is the Least Signif-
icant Bit (LSB) based method, which takes advantage of the imperceptibility of
small changes to the least significant bits of the data [7,28]. With the rise of deep
neural networks, the field of steganography has rapidly evolved to overcome the
challenge of security and capacity. Deepsteg [1], which is an early work of image
steganography, attempts to use an encoder and decoder to determine where to
place the secret information. CRoSS [27] utilizes diffusion models to only reveal
the secret information when the accurate prompt is given. To enhance the ca-
pacity aspect while ensuring the security, invertible neural networks (INNs) have
been actively adopted. In the image steganography field, HiNet [8] incorporates
INNs with wavelet domain to minimize distortion, and DeepMIH [4] progresses
to hide multiple images into one. LF-VSN [14] further attempts to hide seven
videos into one utilizing the INN.

Notwithstanding their innovations, a recurrent limitation across these previ-
ous methods is the trade-off between capacity and security. If the cover data is
damaged in any way during the embedding process, it becomes susceptible to
detection by steganalysis algorithms [23, 26]. This vulnerability poses a signifi-
cant limitation, especially when attempting to hide large volumes of data such
as videos or 3d shapes. INRSteg cannot be detected by traditional steganlalysis
tools and therefore ensures security while maintaining high capacity.
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2.2 Cross-modal steganography

The evolution of steganography has also expanded to the concealment of infor-
mation across different data modalities, such as embedding audio data within
videos, which is called cross-modal steganography. [24] embeds video informa-
tion into audio signals by leveraging the human visual system’s inability to rec-
ognize high-frequency flickering, allowing for the hidden video to be decoded by
recording the sound from a speaker and processing it. [6] utilizes a joint deep
neural network architecture comprising two sub-models, one for embedding the
audio into an image and another for decoding the image to retrieve the original
audio. These methods achieve cross-modal steganography using deep learning
techniques, but are still restricted on specified modalities.

Recent advancements in Implicit Neural Representations (INRs) have paved
the way for a new paradigm in steganography [5,10]. INRs have been leveraged
to represent multiple modalities of data simultaneously. StegaNeRF [10] hides
data of various modalities at viewpoints when rendering NeRF. [5] conceals au-
dio, video, and 3D shape data within a cover image, leveraging RGB values as
weights of the INRs. While these recent works represent a paradigm shift in
steganography techniques, the capacity and security trade-off still remains an is-
sue and the modality of the cover data is set to be singular. Our proposed method
in this paper seeks to address and overcome this trade-off while maintaining the
advantages of INRs and further eliminating the modality constraint on the cover
data, demonstrating a significant advancement in the steganography research.

2.3 Implicit neural representations

Implicit neural representations (INRs) is a rapidly emerging field where data is
expressed in a continuous and differentiable manner through neural networks.
This representation [18] is resolution-agnostic [19] and is capable of compressing
the data effectively [2]. These advantages highlight various applications of INRs
that show superior performance than that of the array-based representation. For
example, neural radiance field (NeRF) [13] constructs a 5d scene representation
of a 3d object through view-dependent synthesis. [3] proposes a general frame-
work that feeds a modulated INR directly on the downstream models and shows
competitive performance on multiple modalities. [9] employs meta-learning cou-
pled with pruning techniques to efficiently scale implicit neural representations
for large datasets.

3 Method

3.1 Framework

Our research focuses on INR steganography, where the data representations are
transformed into Implicit Neural Representations (INRs), such as SIREN [18].
Figure 1 shows the general framework of our methodology, which is segmented
into three sub-stages. In the Data Representation Transformation stage, secret
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data are transformed into their corresponding Implicit Neural Representations,
represented as θsecret. Subsequently, in the Hide/Reveal stage, θstego is fitted
to represent the cover data, xcover, while preserving the parameters of θsecret.
The Layer-wise Permutation Encoding/Decoding stage introduces a layer-wise
permutation mechanism, designed to avoid detection of the secret data’s presence
and location.

3.2 Data Representation Transformation

In the first stage, we transform the secret data into Implicit Neural Represen-
tations (INRs) by fitting multi-layer perceptrons (MLP) with sine activation
functions for each data. This network was first introduced by [18] as SIREN
(Sinusoidal representations for neural networks) and is widely used in the INR
research field. The structure of the MLP network has n hidden layers of size D
and the output is represented as follows:

y = W(n) (gn−1 ◦ · · · ◦ g1 ◦ g0) (x0) + b(n),

where xi+1 = gi (xi) = σ
(
W(i)xi + b(i)

)
,

(1)

where ◦ is a function composition of fully-connected layers. In the equation,
xi is the input of the ith layer for i ∈ {0, 1, 2, ..., n}, y ∈ RO is the output
value corresponding to x0 ∈ RI , and gi : RD → RD. For our experiments, input
and output dimensions (I,O) are (1, 1), (2, 3), (3, 1), (3, 3) for audio, image, 3D
shapes, and video, respectively. If the input or output dimension of the secret
INRs exceeds that of the cover INR, our method employs a strategic reduction in
the number of hidden layers within the secret INR. Additionally, as the dimension
of the hidden layer D is fixed for each cover modality, the secret INRs’ hidden
layer dimensions are set accordingly.

In general, given a set S of inputs x∈RI and the corresponding outputs
y∈RO, the loss function is given by

Lrecon(θ)=
∑

(x,y)∈S

∥fθ (x)− y∥22 (2)

, where fθ is the neural representation of the data. For example, given a 2D image,
the set S consists of 2D coordinates x∈R2 and the corresponding RGB values
y∈R3. INRs enable a variety of data types to be expressed in this unified network
architecture. This benefits the overall security paradigm of our steganography
framework by hiding the underlying data types.

3.3 Hide and Reveal

In this section, we explain our main idea associated with the hiding process. The
secret INRs, θsecret, undergo a process of allocation and fitting to the cover data,
xcover. Within the weight space, only the diagonal blocks of weight matrices are
occupied by the parameters of θsecret, so that the non-diagonal parameters can
be fitted to xcover, while ensuring the diagonal block’s weight values to remain
unaltered.
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Fig. 2: An example of allocating two se-
cret INRs, θsecret1 and θsecret2, into the
stego INR, θstego. For θsecret1, θsecret2, and
θstego, (I1 = 1, O1 = 1, n1 = 4, D1 = 4),
(I2 = 3, O2 = 3, n2 = 3, D2 = 5), and
(I = 2, O = 3, n = 4, D = 9), respectively.

First, we explain when the num-
ber of secret data, N , is two with-
out losing generality for hiding multi-
ple data. The number of input nodes,
output nodes, hidden layers, and the
dimension of the hidden layers of
θsecret1 and θsecret2 are each set to
(I1, O1, n1, D1), (I2, O2, n2, D2), re-
spectively. And (I,O, n,D) for the
stego INR network, θstego, where D1+
D2 is set to equal D. Now, we sub-
stitute the parameters of the initial-
ized θstego by concatenating θsecret1
and θsecret2 as shown in Figure 2.
Note that the initialized parameters
of θstego are omitted for clarity. After
the substitution, the parameter of θstego is as follows:

W(i) =

(
W

(i)
1 W

(i)
01

W
(i)
02 W

(i)
2

)
,b(i) =

(
b
(i)
1

b
(i)
2

)
. (3)

Here, W(i), W(i)
1 , W(i)

2 and b(i), b(i)
1 , b(i)

2 are the ith layer’s weight matrices
and bias vectors of θstego, θsecret1 and θsecret2, where i ∈ {0, ..., n}. If θsecret1 or
θsecret2 have fewer hidden layers compared to θstego, the parameters of θstego are
not substituted. W(i)

01 and W
(i)
02 are the remaining parameters of θstego.

Now, θstego is fitted to xcover through a selective parameter update using a
binary mask, so that the parameters of θsecret1 and θsecret2 are preserved while
the remaining weights get updated. After successfully updating the weight space,
the reconstructed discrete representation depicts xcover and all secret data can
be retrieved from θstego.

For N > 2, the hiding process is expanded in the same manner, so we further
explain when N = 1. When there is only one secret data, the parameters of
θsecret1 can be freely allocated in θstego. Suppose that θsecret1 is allocated in the
middle of θstego, then the weight space of θstego is as follows:

W(i) =


W

(i)
01 W

(i)
02 W

(i)
03

W
(i)
04 W

(i)
1 W

(i)
05

W
(i)
06 W

(i)
07 W

(i)
08

 ,b(i) =


b
(i)
01

b
(i)
1

b
(i)
02

 , (4)

where W(i), W
(i)
1 and b(i), b

(i)
1 are the ith layer’s weight matrices and bias

vectors of θstego and θsecret1, for i ∈ {0, ..., n}. W(i)
01 ,W

(i)
02 , · · · ,W

(i)
08 ,b

(i)
01 , and

b
(i)
02 are the remaining parameters of θstego. This network then goes through the

same processes as when there are multiple secret data.
The inherent flexibility of our approach is highlighted by its capability to

insert diverse data types, in varying amounts, at arbitrary desired positions.
This versatility addresses and mitigates capacity constraints.
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3.4 Layer-wise Permutation Encoding and Decoding

To enhance security of our method, we strategically permute the nodes within
each layer of the stego network. This layer-wise permutation allows the param-
eters of the secret INRs to be distributed throughout θstego, making the param-
eters indistinguishable and thus undetectable. In this section, we demonstrate
how the permutation is executed via one 128-bit private key ρ, utilizing a cryp-
tographic key derivation function (KDF), which derives one or more secret keys
from a master key. First, the private key is randomly selected and is employed to
generate n secret keys for the n hidden layers of θstego. Subsequently, the nodes
of each layer are permuted according to the secret key assigned to each layer.
The total number of possible permutation variations per INR is (D!)n, where D
is the dimension of the hidden layer. This shows that the security implications
of this permutation intensify, as the possible combinations of permutation grow
exponentially with the number of hidden layers in the θstego.

It is crucial to emphasize that the overall functionality of the neural network
remains unchanged throughout this operation. This operation leverages the in-
herent property of permutation invariance exhibited by Multi-Layer Perceptrons
(MLPs) within a single layer. As INRs are also MLP networks, all permuted net-
works are identical to the original network. Therefore, θstego is invariant to the
layer-wise permutation, whereas extracting the secret INR networks becomes
impossible without the private key.

4 Experiment

We explore the performance of INRSteg focusing on its resilience to distortion,
capacity for information hiding, and security against detection. Distortion mea-
sures both the indistinguishability between the cover data and the reconstructed
data from stego INR, and the performance drop during the hiding and revealing
stage of the secret data. Capacity refers to the amount of hidden information that
can be privately embedded within the cover data. Security indicates the extent
to which the secret data can avoid detection when subjected to steganalysis.

To thoroughly evaluate the distortion, we employ several metrics tailored to
different modalities, which are organized in Appendix A, as well as visualization.
In terms of capacity, we present various cross-modal steganography experiments
and compare the model size with other previous steganography models. For
security, we compute the detection accuracy using image steganalysis models,
SiaStegNet [26] and XuNet [22], and visualize weight distribution to show the
effects of permutation operation.

In our groundbreaking research, we highlight three pivotal aspects of our
experimental evaluation of INRSteg, a novel steganography method that sets
new benchmarks in data hiding techniques:

• Cross-Modal Steganography We initiated pioneering experiments in cross-
modal steganography, demonstrating our method’s unique capability to pri-
vately embed audio and video data within images. Comprehensive ablation
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study demonstrates that INRSteg is generally applicable across all data
modalities achieving high-quality concealment(Sec. 4.1).

• Intra-Modal Steganography We conduct experiments of hiding data within
the same modality, specifically embedding images within images. This ap-
proach allowed us to conduct a comparative analysis of distortion and secu-
rity metrics against those reported in existing literature, showcasing the ad-
vanced capabilities of INRSteg. For ablation study, we conduct multi-image
steganography experiments varying the amount of secret data(Sec. 4.2).

• Efficiency and Robustness Analysis To show the efficiency of INRSteg,
we perform computational cost comparisons with five existing steganogra-
phy models. We test the robustness of INRSteg by simulating a challenging
scenario where network weights undergo quantization. It demonstrates that
our method maintains high performance and robustness even under harsh
conditions, which ensures secure and reliable steganography across a wide
range of applications(Sec. 4.3).

Table 1: Results of Cross-modal steganography experiment. VoxCeleb2 and ImageNet
dataset are used for secret data and cover data, respectively. “Secret/Revealed” indi-
cates the recovery performance of secret data. “Cover/Stego” indicates the reconstruc-
tion performance from stego INR.

Secret/Revealed Cover/Stego

VoxCeleb2 ImageNet

Audio Video Image

SNR ↑ MAE ↓ PSNR ↑ APD ↓ PSNR ↑ RMSE ↓
37.558(±5.4) 0.314(±0.3) 41.448(±3.1) 1.349(±0.5) 39.258(±4.4) 2.948(±1.5)

4.1 Cross-modal Steganography

ImageNet and VoxCeleb2 For cross-modal steganography experiment, we
conduct a pioneering steganography experiment that embeds the VoxCeleb2
dataset within images from ImageNet dataset. VoxCeleb2 dataset has both video
and audio files, thereby enabling simultaneous playback of visual and auditory
data. Using our INRSteg method, we leverage images from ImageNet dataset
as cover data to hide video and audio data at the same time. Tab. 1 shows the
distortion performance for secret/revealed and cover/stego performance demon-
strating the efficacy of our approach in preserving the content of cover and
the embedded data. For the secret and the revealed secret data pair, as our
framework goes through lossless recovery in terms of INR, the secret/revealed
secret performance is solely dependent on the data representation transformation
phase. Moreover, Figure 3 shows visualization of the reconstructed data, recov-
ery of video and audio secret data. There is no noticeable quality degradation,
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Fig. 3: Visualization results of cross-modal steganography. Can you identify which
image is the cover and the reconstructed cover data? For the video and audio examples,
can you determine which are the secret and revealed secret data? For images, upper
one is cover data and below is reconstructed cover data. For video, upper row is secret
data and below is revealed secret data. For audio, the left is secret data and the right
is revealed secret data.

which implies successful results of cross-modal steganography. Notably, cross-
modal steganography is unprecedented, representing a significant improvement
in the field of steganography. More reconstruction results using other modalities
can be seen in Appendix C, showing successful multi-data steganography with
almost no visible difference for both 3D shape and video. Additionally, there are
visualization results of weight space after steganography and comparison results
of weight distribution after permutation operation in Appendix D, demonstrat-
ing the security of INRSteg.

Ablation study For ablation study, we try to demonstrate that INRSteg is gen-
erally applicable across all data modalities for steganography. Therefore, we de-
sign experiments that cover all combinations of data modalities where cover data
type is image, audio, or video and secret data type is image, audio, 3D shape,
or video. The distortion performance of all single-data cross-modal steganog-
raphy tasks can be seen in Tab. 2, demonstrating achievement of exceptional
performance for all cases. For additional reconstruction results, we show them in
Appendix C. Recovery performance results for secret data are in Appendix E. A
deeper analysis of the results presented in Tab. 2 reveals two key factors that in-
fluence improved cover/stego performance: the modality of the secret and cover
data, and the capacity of the neural network utilized for the stego INR. We ob-
serve that when the modalities of the secret and cover data match, the stego INR
demonstrates enhanced accuracy in fitting to the cover data. This phenomenon is
attributed to the intrinsic properties of INRs, where the weight spaces of neural
networks exhibit similarities when representing with same modality data [21].
Moreover, leveraging the capabilities of INRs, employing a larger neural network
for the cover data fitting process enhances the quality of cover data reconstruc-
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tion. This can be shown in Tab. 2, where the performance of hiding 3D shapes in
images outperforms hiding images in images. This property allows flexible con-
trol of the network size for secret and cover data based on the required recovery
quality and resource space constraints in the real world. An additional ablation
study about the effectiveness of the padding ratio is proposed in Appendix B.

Table 2: Cover/Stego performance of single-data steganography. The best results are
highlighted for each cover modality.

Cover type

Image Audio Video

Secret type PSNR ↑ RMSE ↓ SNR ↑ MAE ↓ PSNR ↑ APD ↓

Image 62.34 0.204 32.63 0.599 35.26 3.315
Audio 63.16 0.179 41.42 0.268 34.69 3.574
Video 56.18 0.408 27.20 0.931 41.26 1.532

3D shape 92.95 0.000 23.12 1.403 38.54 2.244

4.2 Intra-modal Steganography

Image steganography In this section, we compare INRSteg to existing image-
to-image steganography methods to show that our framework also excels in
intra-modal tasks. Tab. 3 compares the performance of INRSteg with other
deep learning based image-to-image steganography methods, DeepMIH [4] and
an improved DeepSteg [1]. INRSteg outperforms on all metrics showing that
our framework achieves state-of-the-art performance. For hiding two secret im-
ages into one image, the results in Appendix F, and Figure 4 further visualizes
the cover/stego and secret/revealed secret image pairs for two images into one
steganography. We continue to compare our results with DeepMIH using differ-
ence maps each enhanced by 10, 20, and 30 times. For INRSteg, nearly no visual
differences exist between the original and the revealed images even when the
difference map is enhanced 30 times. For DeepMIH, on the other hand, we can
notice obvious differences for all difference maps when comparing cover/stego
and secret1,2/revealed secret 1,2 pairs.

Image steganalysis To examine security, we adopt two image steganalysis
tools, SiaStegNet [26] and XuNet [22]. Tab. 4 presents the detection accuracy of
our framework and other models. The security is higher as the detection accu-
racy is closer to 50%. Unlike other steganography models, the detection accuracy
of INRSteg is 50%, meaning that the steganalysis tool completely fails to dis-
tinguish the stego data from the cover data. This shows that our framework
is undetectable using existing steganalysis tools and assures perfect security.
This is because our framework does not directly edit the data in the discrete
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Fig. 4: A comparison of difference maps (enhanced by 10x, 20x, and 30x) between
the original images and the revealed images. Columns 2-6 are results of INRSteg and
columns 7-10 are results of DeepMIH [4].

representation state, but performs manipulation after transforming the repre-
sentation into a neural network, which is unnoticeable when re-transformed to
the discrete representation. Moreover, we conduct steganalysis analysis on multi-
images steganography. The results in Appendix F.

Multi-image steganography In Tab. 5, we conduct experiments for multi-
image steganography hiding more than two images when the size of stego INR
is fixed, so that one may have to decrease the network size of each hidden data
in order to fit the memory capacity. The results show that high recovery per-
formance maintains even when increasing the number of hidden data. For more
experiments with other modalities, please refer to Appendix G.

Table 3: Performance comparison of image-
to-image steganography.

Metric MAE ↓ PSNR ↑ SSIM ↑ RMSE ↓

DeepSteg cover 2.576 37.48 0.947 3.417
secret 3.570 33.34 0.957 3.57

DeepMIH cover 2.839 36.05 0.932 4.276
secret 3.604 32.97 0.9550 5.746

INRSteg cover 0.153 62.34 0.999 0.204
secret 1.084 45.84 0.988 1.326

Table 4: Steganalysis compari-
son of image-to-image steganog-
raphy.

Accuracy (%)

SiaStegNet XuNet

DeepSteg 92.87 75.83

DeepMIH 90.70 90.82

INRSteg 50.00 50.00

4.3 Efficiency and Robustness Analysis

Model Size Comparison In our efficiency analysis, we compare model sizes
to evaluate the computational cost and efficiency of our proposed INRSteg rel-
ative to existing steganography models. As described in Tab. 6, our INRSteg
achieves a remarkably compact architecture, consisting of only 400,000 param-
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eters. Compared to other existing steganography models, this advantage is no-
table. DeepSteg [1], with 42.58 million parameters, is approximately 107.46 times
larger than our model. DeepMIH [4] model, with 12.42 million parameters, has
31.34 times more parameters, and LF-VSN [14], at 7.40 million parameters, is
18.68 times larger. Especially, CRoSS [27] contains 1,066.24 million parameters,
corresponding to 2690.54 times the size of the model. This comparative analysis
highlights the efficiency of our INRSteg, demonstrating its capability to achieve
robust steganography performance with a significantly reduced computational
space. The small model not only promotes faster training and inference times,
but also opens up opportunities for deployment on devices with limited compu-
tational resources such as smartphones.

Table 5: Distortion performance of
hiding multiple images (> 2) into one.

Metric PSNR ↑ RMSE ↓

3 images cover 62.31 0.204
secret 1,2,3 43.67 1.642

4 images cover 62.58 0.153
secret 1,2,3,4 41.86 2.059

Table 6: Model Size Comparison.

Model #Params Ratio to Ours

DeepSteg [1] 42.58M 107.46×
HiNet [8] 4.05M 10.22×

DeepMIH [4] 12.42M 31.34×
CRoSS [27] 1,066.24M 2690.54×
LF-VSN [14] 7.40M 18.68×

Ours 0.40M 1×

Robustness We explore the robustness of INRSteg under harsh conditions
in real-world scenarios. In particular, we apply quantization operation to store
model parameters from float32 to int8 format. This process aims to simulate
scenarios where data precision must be reduced due to storage or transmission
constraints. After quantization, we recover the parameters from int8 to float32
and evaluate the performance metrics of the recovered secret images. Tab. 7
describes the results of performance comparison before and after quantization
across three cover types: image, audio, and video. Notably, while PSNR values
decrease after quantization, this decrease is not as significant as might be ex-
pected given the harsh nature of the quantization process. This indicates that
INRSteg has a robust ability to maintain secret data quality despite the data
compression and precision reductions. Furthermore, something to crucially note
in Tab. 7 is that the SSIM value hardly changes after quantization. Since SSIM
measures the perceptual quality, it is a more representative metric that eval-
uates image quality. Therefore, the results indicate that the visual content of
the secret images remain almost completely. The reconstruction results are in
Appendix H. Additionally, we show preserving secret data when using another
model compression method, pruning, in Appendix I.

5 Limitations and Discussion

We would like to highlight the potential negative impacts that steganography
frameworks may result in the ethical aspect. Users must be cautious not to utilize
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Table 7: Performance Metrics Before and After Quantization for Different Cover
Types. Pre-Q denotes metrics before quantization, Post-Q denotes metrics after quan-
tization. Higher values are better for PSNR and SSIM, while lower values are preferred
for RMSE and MAE.

PSNR ↑ RMSE ↓ SSIM ↑ MAE ↓

Cover type Pre-Q Post-Q Pre-Q Post-Q Pre-Q Post-Q Pre-Q Post-Q

Image 40.0766 33.7483 2.5245 5.2375 0.9821 0.9554 1.7085 3.519
Audio 40.0766 33.5438 2.5245 5.3623 0.9821 0.9529 1.7085 3.723
Video 40.0766 33.8276 2.5245 5.1899 0.9821 0.9583 1.7085 3.417

our work in unethical situations, where one may hide inappropriate information.
Additional limitations are described in Appendix J.

6 Conclusion

In conclusion, this paper introduces INRSteg, an innovative framework designed
for the concealment of multiple cross-modal data through the utilization of the
weight space inherent in Implicit Neural Representations (INR). Our extensive
experimentation demonstrates that INRSteg surpasses existing steganography
techniques in key areas, namely distortion evaluation, data capacity, and secu-
rity measures, across both intra and cross-modal steganography scenarios. A
notable advantage of INRSteg is its deployment of smaller model sizes, which
directly contributes to reduced energy consumption, making it exceptionally
suited for practical real-world applications. Furthermore, our analysis confirms
the robustness of INRSteg, even when subjected to the rigorous demands of
quantization operations. We believe that INRSteg establishes a new benchmark
for achieving an optimal balance between efficiency and performance within the
steganography domain, paving the way for future advancements in secure and
efficient steganography techniques.
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