A Compact Dynamic 3D Gaussian Representation
for Real-Time Dynamic View Synthesis

Kai Katsumata®, Duc Minh Vo®, and Hideki Nakayama

The University of Tokyo, Japan
{katsumata, vimduc, nakayama}@nlab.ci.i.u-tokyo.ac.jp

Abstract. 3D Gaussian Splatting (3DGS) has shown remarkable success in syn-
thesizing novel views given multiple views of a static scene. Yet, 3DGS faces
challenges when applied to dynamic scenes because 3D Gaussian parameters
need to be updated per timestep, requiring a large amount of memory and at
least a dozen observations per timestep. To address these limitations, we present a
compact dynamic 3D Gaussian representation that models positions and rotations
as functions of time with a few parameter approximations while keeping other
properties of 3DGS including scale, color, and opacity invariant. Our method
can dramatically reduce memory usage and relax a strict multi-view assumption.
In our experiments on monocular and multi-view scenarios, we show that our
method not only matches state-of-the-art methods, often linked with slower ren-
dering speeds, in terms of high rendering quality, but also significantly surpasses
them by achieving a rendering speed of 118 frames per second at a resolution of
1,352x1,014 on a single GPU.

1 Introduction

The landscape of novel view synthesis of scenes captured through multiple images/videos
has undergone a revolutionary transformation, owing principally to major breakthroughs
in neural radiance field (NeRF) approaches [6,41.[57]. Although they achieve remark-
able visual quality, particularly in dynamic scenes [4,[21}|31}[34}45], NeRFs inevitably
confront hurdles in terms of high-speed training and rendering [41}43/|44]/48]. This lim-
itation is attributed to their reliance on multi-layer perceptrons (MLPs). Recently, 3D
Gaussian Splatting (3DGS) [26] introduced a differentiable 3D Gaussian representa-
tion and point-based rasterization, signaling a departure from neural network reliance.
3DGS has emerged as a promising solution that not only accelerates training and ren-
dering processes but also delivers high-quality rendered scenes, rivaling the levels set
by NeRF [41] on static scenes.

Nonetheless, in the realm of dynamic scene synthesis, 3DGS faces challenges re-
lated to memory usage and the need for many observations [38]]. In particular, a sig-
nificant number of 3D Gaussian parameters must be stored per timestep, resulting in a
non-negligible increase in memory usage and the need for numerous observations per
timestep. This poses challenges in monocular or few-view setups, as their strict multi-
view assumption demands advanced facilities or expertise, limiting flexibility in cap-
turing setups. Exploring 3DGS without multi-view assumption enables dynamic view
synthesis with a simple and easy camera setup, which is the primary goal of this study.


https://orcid.org/0000-0001-9729-2588
https://orcid.org/0000-0003-4839-032X
https://orcid.org/0000-0001-8726-2780

2 K. Katsumata et al.

1)

/R ) 3
7.45

4 y i
PSNR: 33.56

36.27 PSNR: 33.61 PSNR: 21.52 PSNR: 3

@
PSNR:

FPS: 0.54 FPS: 1.23 FPS: 0.25 FPS: 169 FPS: 146
Mem: 471MB Mem: 1.2GB Mem: 48MB Mem: 21MB Mem: 89MB
K-Planes [18] V4D [20] TiNeuVox-B 3DGS Ours Ground Truth

Fig. 1: We show examples of novel view synthesis on the MUTANT scene in the D-NeRF dataset,
visual quality (PSNR), rendering speed (FPS), and memory used to store optimized parame-
ters. Our method yields reconstruction fidelity competitive with SoTAs with real-time rendering,
achieving 100 x faster rendering speed than V4D and reasonable memory size. Non-obvious dif-
ferences in quality are highlighted. Bold typeface number indicates the best result among the
methods with the competitive rendering quality (excepting for 3DGS), and the underline one
does the second best.

To achieve memory-efficient real-time dynamic view synthesis from monocular and
multi-view videos, we present a compact dynamic 3D Gaussian representation, contain-
ing time-invariant and time-varying parameters to capture dynamic motion effectively.
Similarly to [26][38]], we use scaling factors in the covariance matrix, opacity, and color
as time-invariant parameters. As modeling the change in positions over time is impor-
tant to represent dynamic scenes [43H45]], we express each 3D Gaussian position as a
function of time to model the temporal change in the position. We also represent 3D
Gaussian rotation as a time-varying parameter because the rotation of the objects in
the world can be typically changed. Inspired by the studies that model motion as pe-
riodic [2,[71]], we fit the position using the Fourier approximation. We fit the rotation
using the linear approximation. The time-varying parameters make our representation
dynamic, meaning that a 3D Gaussian moves and rotates over time. Moreover, as we use
a function with a few parameters to represent the position, the small degree of freedom
contributes to the smoothness of reconstructed scenes, enhancing the robustness against
unseen views. Crucially, the memory consumption of our representation is solely deter-
mined by the number of 3D Gaussians and the number of the approximation function
parameters, remaining independent of input length. Beyond optimizing Gaussian repre-
sentations through image-level reconstruction, we further enhance temporal consistency
by supervising the Gaussian with optical flow obtained from input videos. This ensures
high-quality reconstruction and facilitates the generalization of the representation.

Our experiments on dynamic datasets (D-NeRF [45]], DyNeRF [31]], and HyperN-
eRF [44]])) demonstrate the effectiveness of optimizing our dynamic 3D Gaussian from
both monocular and multi-view videos, showing that our proposed method achieves
rendering quality that rivals that of previous NeRFs [[17,[18,[20]. In addition to faithful
rendering quality, the proposed method achieves rendering speeds similar to a fast ra-
diance field method while avoiding large memory increases caused by a dynamic
extension (see Fig. [T). Finally, we show an editing application enabled by the explicit
property of 3D Gaussian representations. In summary, our contributions are as follow:

— We present a compact dynamic 3D Gaussian representation with time-varying Gaus-
sian parameters equipped with basis functions for representing dynamic scenes.



A Compact Dynamic 3D Gaussian 3

— As a 3D Gaussian representation is defined over all the timesteps, the 3D Gaussian
parameters can be optimized with the frames at all the timesteps, enabling dynamic
scene reconstruction from monocular or few-view videos.

— Our dynamic 3D Gaussian representation facilitates real-time high-quality dynamic
scene rendering of high-resolution images of 1,352 x 1,014 with a frame rate of 118
FPS using a single GPU.

2 Related Work

We briefly overview radiance fields for dynamic scenes and discuss recent efficient
explicit representation methods (grid-, plane-, hash-, and point-based), contextualizing
our work within real-time dynamic view synthesis.

2.1 Dynamic view synthesis

Applications in virtual reality and computer vision often need reconstruction of dy-
namic scenes. Several works extend NeRF [41]] to handle dynamic scenes in multi-view
or monocular setups by time-varying NeRF [21}(31,/45|60]]. The regularization tech-
niques for temporal smoothness enable suitable scene representations from monocular
videos [33]]. Additional sensory information is also useful for spatio-temporal regular-
ization. Some attempts [21}33}|58]] employ depth or flow, which are observed or pre-
dicted with external networks to reconstruct from sparse observations. Deformation-
based approaches [431/441|541|59]], another research direction in dynamic reconstruction,
combine static NeRF and deformation fields. Although tremendous efforts show high
visual quality for dynamic view synthesis, the frequent querying of MLP in NeRFs re-
sults in the drawback of slow optimization and rendering [|65]]. Our study aims to enable
real-time dynamic view synthesis with high visual quality. We aim to extend 3DGS to
dynamic scene reconstruction to achieve high-speed rendering while maintaining the
rendering quality from sparse training views.

2.2 Explicit Radiance Fields

Recent studies [[11}|19,|69] have addressed the issue in implicit models (i.e., NeRFs)
by exploring explicit models, reducing optimization and rendering time. Plenoxels [19]
directly optimizes 3D grid representation instead of neural networks. Generally, explicit
models sacrifice visual quality for fast training time [[19]. Hybrid approaches [11}/17}
18/20,42,/53] aim to achieve better trade-offs between training time and visual quality.
Instant-NGP allows for a compact MLP by exploiting a multi-level hash grid to encode
positions to feature vectors [42]. Plane-based approaches are designed principally to
represent bounded scenes [[3}9}/10}/14,/18,[23]. MERF [49] employs a multiresolution
representation and a fast contraction function to reconstruct unbounded scenes. For
dynamic scenes, K-planes [[18]] decomposes 4D dynamic volumes into multiple feature
planes and employs an MLP-based feature decoder for determining color and density.
Structured representations still grapple with the trade-off between rendering speed and
quality. In this study, unstructured 3D Gaussians promise large gains in rendering speed.



4 K. Katsumata et al.

2.3 Point-based rendering

Points, which naturally come from depth sensors, Structure from Motion (SfM) [51]],
or common Multi-View Stereo (MVS) algorithms [50,/52]], offer a useful representa-
tion of fine-grained scenes and complex objects, and facilitate computationally efficient
rendering. Consequently, they have been studied comprehensively in the vision and
graphics community. The differentiable pipeline for point-based rendering results in
points can be used for reconstructing 3D scenes [26H29]. 3DGS [26]] achieves real-time
rendering with high visual quality for unbounded static scenes at the expense of the
generalization performance derived from NeRF’s continuous neural field representa-
tion. 3DGS is replacing NeRFs as the backbone of text-to-3D models, leading to faster
3D generation [|1]12,/55/66}/68]]. Recently, Dynamic 3D Gaussians [38]] employs 3DGS
for dynamic scenes, which models dynamic scenes by the Gaussian position and ro-
tation at each timestamp. The position and rotation of Gaussians at every timestamp
are effective in modeling scenes from dense multi-view dynamic scenes. However, this
approach presents difficulties in reconstructing monocular dynamic scenes, resulting
in excessive memory consumption, particularly for extended input sequences. Specifi-
cally, the space complexity of the method for a scene with 7" frames is O(T'N), where
N is the number of 3D Gaussians. Our goal is to reduce memory consumption by repre-
senting time-varying position and rotation with approximation using a few parameters.
The space complexity of our method is O(LN ), where L is the number of parameters
of the approximation, and usually L < T'.

Concurrent works on dynamic view synthesis includes approaches combining Gaus-
sian Splatting with MLPs [5//22,/32,35/36], approaches focusing on Gaussian represen-
tation [[13}|15L{16}|64,/67], and approaches for specific targets [30,46,47,/72]]. Space-
timeGaussian [32] focuses on dynamic view synthesis from mulit-view videos, unlike
this study, by combining Gaussian Splatting and MLPs. [64] aims to model motion by
employing a deformation field network while sacrificing rendering speed. [67] splits
Gaussians in a time direction, and each Gaussian only focuses on a local temporal
space. Four-dimensional (4D) Rotor Gaussian Splatting [15]] models a local temporal
space via temporal slicing for fast rendering. We aim to build a memory-efficient Gaus-
sian representation for dynamic scenes, even for monocular scenes, while maintaining
pure 3D Gaussian representation in order not to sacrifice the gift of 3D Gaussians, such
as outstanding rendering speed and ease of direct editing of the scene.

3 Method

Given images with timesteps and camera parameters obtained from videos, our task
is to learn a 4D spatial-temporal representation of a dynamic scene that enables fast
and high-quality view rendering. To achieve this, we use 3DGS in dynamic view syn-
thesis. The original 3D Gaussian representation [26]] is defined by a position (mean),
a covariance matrix (decomposed into a rotation matrix and a scaling vector), a color
(determined by spherical harmonics (SH) [8]] coefficient), and an opacity. To represent
dynamic scenes, each 3D Gaussian in our method (Fig. [2) regards the position and
rotation as time-varying parameters and others as time-invariant parameters over time
(Sec. . Given a set of 3D Gaussians, intrinsic and extrinsic camera parameters, and



A Compact Dynamic 3D Gaussian 5

3D center u(r) " camera
time ¢ params
v
\
' 4 - X 9
L 4 fime 7 » »
4 3D rotation R(?)
\ \ . @
- 5
time ¢ Projecti f poi
3D Gaussians Time-varying parameterization rojection of points onto Rendered image

camera plane at time ¢

Fig. 2: Overview of our dynamic view synthesis framework. Our dynamic 3D Gaussian represen-
tation takes temporal modeling of 3D centers and rotations with Fourier and linear approximation,
respectively. Our representation parameters are shared over all the timesteps, and observations of
each timestep hint at the representation for other timesteps, enabling compact representation and
reconstruction of dynamic scenes from few-view videos. In this figure, we only illustrate the
time-varying parameterization of one Gaussian for the sake of simplicity.

a timestep, we render images with the 3DGS technique [26]], which renders an image by
employing Gaussians within the camera plane out of a set of 3D Gaussians (Sec. [3.2).
We update the Gaussian parameters to decrease the distance between rendered and train-
ing images in image and flow spaces (Sec.[3.3). Flow reconstruction loss enhances the
temporal consistency of the learned representation, resulting in plausible image recon-
struction. The small degrees of freedom of our representation essentially facilitate the
reconstruction of dynamic scenes from a few observations.

3.1 Dynamic 3D Gaussian representation

One possible extension of 3DGS [38]] to dynamic scenes is to model the scenes per
timestep explicitly. Although that strategy allows for flexible modeling for dynamic
scenes, it requires 3D Gaussian parameters per timestep, increasing the memory size
proportionally to video length. Since the representation for each time is optimized by
observations with the number of cameras, the strategy lacks sufficient observations in
monocular or few-view video setups, limiting its effectiveness in such scenarios.

To design a compact dynamic 3D Gaussian representation, we express 3D Gaus-
sian parameters using only a few parameters to achieve faithful reconstruction without
a large increase in parameters. Our dynamic scene representation comprises a set of dy-
namic 3D Gaussians, extending the static 3D Gaussian introduced in [26]]. This repre-
sentation allows 3D Gaussians to move through the scene over time, using time-varying
parameters (center position and rotation factors) and time-invariant parameters (scale,
color, and opacity). Each dynamic Gaussian encapsulates the following parameters:

1) a 3D center at time : [z(t), y(t), 2(¢)]T € R3,

2) a 3D rotation at time ¢ represented by a quaternion:

[QI (t), Qy (t), qz (t), Qu (t)]T € R4’

3) a scaling factor: [s;, sy, $5]7 € R3,

4) SH coefficients representing color with the degrees of freedom k:
he R3X(k+l)2,

5) an opacity: o € R.

~




6 K. Katsumata et al.

Each Gaussian at time ¢ is characterized by a 3D center u(t) = [z(t), y(t), z(t)]T and
a 3D covariance matrix 3(¢). The density of the 3D Gaussian at the intersection x with
aray is obtained as follows:

Gy(x) = e 3 (@—p() S0 (@—p(t) (1)

To constrain the covariance matrix 3(t) such that it is a positive semi-definite matrix
during optimization, the covariance matrix 3(t) is decomposed by using a scaling ma-
trix S = diag(ss, sy, 5-) and a rotation matrix R(t) as £(t) = R(t)SSTR(t)". Here,
the rotation matrix R(t) is represented by quaternion (g (t), gy(t), ¢ (%), gw(t)). Since
most parts of the dynamic scene hardly change in scale because the solid objects (e.g.,
humans, animals, and things) scarcely expand or shrink, we maintain the scale param-
eter as a constant to reduce the model size. In what follows, we formally define the 3D
center and rotation.

Since motion in dynamic scenes is primarily described by changing the position of
points like scene or optical flow [37,/61]], we model the 3D center with an expressive
approximation. We approximate the 3D position x(t), y(t), z(t) using Fourier approxi-
mation. At time ¢, it is represented by

z(t) = wy o + ZiL:lwz,zi—l sin(2imt) 4 wy, 2; cos(2int),
y(t) = wy 0+ Z{;lwy’gi,l sin(2imt) + wy 2; cos(2int), 2
z2(t) =w. 0+ Zlewzgi_l sin(2imt) 4+ w, 2; cos(2int),

where, w. o, ..., w. o, are the intercept and coefficients of the position, and L is the
number of terms (harmonics). We remark that a polynomial approximation is inade-
quate due to underfitting with a small number of bases and overfitting with higher-order
polynomials. For these reasons, we choose the Fourier approximation.

3DGS uses anisotropic 3D Gaussians, resulting in the need for dynamic modeling
of Gaussian rotations. We approximate the 3D rotation (quaternion) over time using a
linear approximation because a unit quaternion can be approximated locally as linear
when considering its tangent plane. At time ¢, it is defined as

4z () = Waz,0 + Wez1t,  Gy(t) = Way,0 + Way,1t,
QZ(t) = Wgqz,0 + qu,ltv Qw(t) = Wqw,0 + wqw,lta

3

where w. o and w. ; are intercepts and coefficients of the rotation, respectively. We
project the quaternion ¢.(¢) onto the unit quaternion by normalizing it: ¢.(¢)/||g.(¢)]|, to
ensure that the quaternion at time ¢ is a unit quaternion.

For each Gaussian, the preceding definitions yield 3L +8+3+3(k+1)?+1 param-
eters with respect to the 3D center, 3D rotation, scale, color, and opacity. Notably, the
parameter count for each Gaussian is defined merely by the number of approximation
terms and spherical harmonic degrees of freedom, with no regard to time length. Com-
pared to methods that store parameters for each timestep, our approach saves on mem-
ory usage. Memory consumption in our dynamic scene representation is determined by
two hyperparameters (i.e., L and k) and the number of Gaussians used. Furthermore,
the representation defined as a function of time over continuous time inhibits discon-
tinuous movement through time. This characteristic improves robustness in novel view
synthesis settings.



A Compact Dynamic 3D Gaussian 7

3.2 Rendering via 3D Gaussian Splatting

Rendering with 3D Gaussian applies splatting techniques [26] to the Gaussian within
the camera planes. Zwicker et al. [[73]] introduced the projection of the 3D covariance
matrix to the 2D one. The 3D covariance matrix X is projected into a 2D one X’ given
a viewing transformation W as /(t) = JWX(t)WTJT, where J is the Jacobian of
the affine approximation of the projective transformation at Gaussian center p(t):

J=10 - 3%/, “)
00 O

where [v;,v,,v.]T = Wp(t) is the camera coordinate of the Gaussian center gu(t)
obtained by the viewing transformation, which projects the points from world space to
camera space.

Similar to NeRF style volumetric rendering, point-based rendering computes the
color C of a pixel by evaluating the blending of NV ordered points that overlap the pixel
C =N oy H;;i(l — «), where ¢; represents the color of a Gaussian evaluated
by SH coefficients, and «; represents the density that is calculated from a 2D Gaussian
with the 2D covariance X" and 2D center p at time ¢ and the optimized opacity o.

3.3 Optimization of the dynamic 3D Gaussian representation

We optimize the Gaussian parameters, i.e., intercepts and coefficients of position and
rotation w, a scaling factor s, s, 5., SH coefficients h, and an opacity o, based on the
iterations of rendering and a comparison of the rendered images with training frames
in the captured videos. To compare the rendered and training views, the loss function
contains the L1 loss and the structural similarity (SSIM) [63] loss £p_gsim:

Erccon = (]- - )\)|j - I‘ + )\‘CDfSSH\/Iv (5)

where I and I are the rendered and target images, respectively. The loss function moves
and rotates the anisotropic Gaussians and changes their color and opacity so that each
Gaussian covers a homogeneous area. Since the loss just fixes incorrectly positioned
Gaussians, the over- or under-representation of the set of Gaussians for the scene needs
a mechanism for creating Gaussians that reconstruct the scene or destroy extra Gaus-
sians. We also follow the divide and prune techniques in 3DGS for producing a compact
and precise representation of the scene. We surveil the gradients of each Gaussian and
densify Gaussians by splitting a Gaussian with a large gradient and a large scale into
two small Gaussians, and cloning a Gaussian with a large gradient and a small scale to
two Gaussians. Moreover, we remove transparent Gaussians with an opacity less than a
threshold value of 0.005.

Following [26], we initialize a set of Gaussians using a set of sparse points from
StM [51]] for real scenes, and we initialize a set of Gaussians randomly using a uni-
form distribution for synthetic scenes owing to the absence of the prior. We adopt a
two-stage optimization strategy consisting of static and dynamic stages. Deeming the



8 K. Katsumata et al.

frames in the captured datasets as static scenes, we optimize static representation in the
static stage to learn the prior of Gaussians. In other words, we optimize the parameters
that are consistent all over time (i.e., scale, SH coefficients, and opacity) and the in-
tercepts for the center and rotation (w0, Wy,0, W2,0, Wqz,0, Way,0, Wqz,0, Wqw,0) AMONG
the Gaussian parameters in the static stage. After the static stage, we optimize all the
parameters of the set of Gaussians to reconstruct a dynamic region as a dynamic stage.

Another challenge in the dynamic scene reconstruction is ambiguity caused by the
limited number of captured views at a timestep. Since a dynamic scene contains tempo-
ral changes, such as moving objects and changing shapes, sharing the scene information
over frames with different timesteps is difficult. To overcome the ambiguity, we employ
flow information. Similar to our 3D Gaussian, scene flow [391/40,/62] is defined as the
position of a point in 3D space and its motion. These 3D points originate from different
mechanisms than those in 3D Gaussian, making matching in 3D space difficult. Since
optical flow defined on the image plane can be directly matched with a 3D Gaussian and
is readily to compute from monocular inputs, we supervise the flows of the optimizable
Gaussians with the ground truth optical flows of the input frames. We use RAFT [56] to
obtain ground truth flow for training views: forward flow fr,q and backward flow fiwq
between two adjacent frames. The flow loss L.y takes the L1 loss between the ground
truth flows and the optical flow of the Gaussian for both directions of the flows. The
flow loss gives our method spatial-temporal consistency without any additional compu-
tation cost in rendering. We combine the flow loss Lq.y, with the reconstruction loss
that compares the rendered and training views:

L= Erecon +/\ﬂow ﬁﬁow (F, F), (6)

where F' = {ftwd, fowa} and F are the ground truth flow and the flow of the Gaus-
sians, respectively, and Aqoy 1S a balancing hyperparameter for the flow term. Instead
of applying an optical flow algorithm for rendering, we create pseudo optical flow from
a Gaussian representation. Scene motion is represented solely by the 3D mean coeffi-
cients: Wy, 1<4, Wy,1<4, Wz,1<4. Scene flow in 3D space can be computed by

fffzvd:m(t+At)7m(t)a flfwd:x(t)fx(tht)a
fla=y(t+ At —y(t), fila=ylt)—y(t— Ab), @)
floa = 2(t+ At) — 2(t),  fiwa = 2(t) — 2(t — At),

where At is the difference between the timesteps of the two image frames. The scene
flow is projected into a 2D camera plane using

f?fyv:d pwd} = I {wd,bway f?fwd,bwd}’ f{szd,bwd}]Ta €))

where J is the Jacobian of the affine approximation of the projective transformation at
the Gaussian center p (Eq. (). Regarding scene flows on the camera plane as RGB col-
ors, point-based rendering can compute an optical flow of a pixel through a-blending:

i—1
frwa = fxvﬁl ] = ay). )
j=1



A Compact Dynamic 3D Gaussian 9

Ground Truth K-Planes V4D TiNeuVox-B 3DGS

T-REX

STAND UP

EPECECECE M E L

% R X

-WWW
ol Ef;.i‘/ Er;‘i: %‘i) E\‘.i; %.iz

—

Hook

BOUNCING BALLS

JUMPING JACKS

?

v

Fig. 3: Qualitative comparison on D-NeRF . ‘We highlight the differences by zoom view. Our
method achieves competitive visual quality with strong baselines. While our method successfully
reconstructs intricate details like hands, it causes a blurred sphere shape.

The backward flow is calculated in the same way. The optical flow F consists of the
forward flows ffwd and backward flows fbwd for all pixels. We exclude the flow loss
for the D-NeRF dataset because the teleport of the cameras between adjacent frames
causes difficulties in calculating ground truth flows.

4 Experiment

4.1 Evaluation data

We evaluate our compact dynamic Gaussian representation using dynamic scene datasets:
a synthetic one D-NeRF [45]] and two real ones, i.e., DyNeRF [31] and HyperNeRF [44].



10 K. Katsumata et al.

Table 1: Quantitative results on the D-NeRF dataset [45]. Our method performs competitively
against NeRF approaches in terms of visual quality and achieves the fastest rendering speed
among the highest-performing methods. Results except the FPS of [17,/18}|20] are adopted from
the original papers. The best and second best scores among competing methods are highlighted.

PSNR{ MS-SSIM? LPIPS| FPS 1 Train Time | Mem/

TiNeuVox-S [17] 30.75 0.96 0.07 0.32 8 mins SMB
TiNeuVox-B [[17] 32.67 0.97 0.04 0.13 28 mins 48MB
K-Planes [[18] 31.61 0.97 - 0.54 52 mins ~497MB
V4D [20] 33.72 0.98 0.02 147 6.9 hrs 1.2GB

3DGS [26] 20.51 0.89 0.07 170 6 mins ~50MB
D-3DGS 17.22 0.81 0.13 173 15 mins ~913MB
Ours 32.19 0.97 0.04 150 8mins ~159MB

Table 2: Quantitative results on the DyNeRF datasets [31]]. Results excepting FPS of [[18,]20]
are adopted from the original papers. The best and second best scores among competing meth-
ods (excepting 3DGS) are highlighted. While our method matches NeRFs in terms of rendering
quality, our method matches 3DGS in terms of rendering speed. Besides, our method is 20 times
more compact than Dynamic3DGaussians.

PSNR{ MS-SSIM{ LPIPS| FPSt Train Time, Mem./

K-Planes [[18] 31.63 0.964 - 031 18hrs ~309MB
V4D 28.96 0.937 0.17 0.11 4 hrs 1.2GB

3DGS [26] 20.94 0.800 029 109 20mins ~198MB
D-3DGS 24.36 0.834 025 119 51mins ~2.3GB
Dynamic3DGaussians [38] 27.79 0.869 023 51 2.1hrs ~6.6GB
Ours 3046  0.955 0.15 118 lhrs ~338MB

D-NeRF dataset [45]. This dataset comprises eight videos of varying lengths, ranging
from 50 to 200 frames per video. The camera setup is designed to mimic a monocular
camera setting by teleporting between adjacent timesteps. The test views are from novel
camera positions. We train and render at the resolution of 800 x 800.

DyNeRF dataset [31]. The multi-camera dataset includes six 10-second videos cap-
tured at 30 FPS using 15-20 synchronized fixed cameras. For evaluation, a central
camera is used, while training utilizes frames from the other cameras. The training
and rendering resolution is set at 1,352x1,014.

HyperNeRF dataset [44]. This dataset encompasses videos ranging from 8 to 15 s,
captured at 15 FPS using two Pixel 3 phones. The training and rendering processes are
conducted at a resolution of 540 x 960.

4.2 Implementation details

We adhere to the experimental setup in the 3DGS paper [26]. The number of approxi-
mation terms of the Gaussian centers L is set to 2 for the D-NeRF dataset. For the other
datasets, L is set to 5 from preliminary experiments. Our two-stage optimization process
begins with an initial fitting of parameters, excluding the coefficients for Gaussian cen-
ter and rotation. This initial stage spans 3,000 iterations and utilizes all training views
in a static setting. Subsequently, we engage in a dynamic stage, adjusting all Gaussian



A Compact Dynamic 3D Gaussian 11

Table 3: Quantitative results on the HyperNeRF dataset [44]. Our method demonstrates com-
petitive performance in rendering quality across all scenes, surpassing the compared methods in
rendering speed. Furthermore, our method is not inferior to the compared methods in training
time and memory size.

BROOM 3D PRINTER CHICKEN PEEL BANANA Mean
PSNR1SSIMTPSNR? SSIM1 PSNR1SSIM1PSNR+ SSIM{ PSNR{SSIM 1
HyperNeRF036 48 hrst  15MB  19.3 0.591 20.0 0.821 26.9 0.948 23.3 0.896 22.2 0.811

FPS1 Train Time| MemJ

T1NeuV0x- 0.14 30mins 48MB 21.5 0.686 22.8 0.841 28.3 0.947 244 0.873 24.3 0.837
V4D 0.15  7hrs 1.2GB 22.1 0.669 23.2 0.835 28.4 0.929 252 0.873 24.7 0.827
Ours 188 lhrs ~720MB 22.1 0.789 25.5 0.919 28.3 0.934 26.6 0.920 25.6 0.890

FTrain time of HyperNeRF is estimated from their paper’s descriptions. Originally reported as 8 hours on 4 TPU v4s ,
the TPU v4 is slightly faster than the A100 GPU, and the A100 GPU is at least 1.5 times faster than the A6000 GPU.

Ground Truth K-Planes Ours

Fig. 4: Qualitative comparison on the DyNeRF dataset | 1]]. The differences are zoomed in.

parameters in 27,000 iterations. The entire optimization process encompasses 30,000
iterations. Following , Ais set to 0.2. We set the flow loss weight Aqey to 1,000 and
acquire ground truth flow through the RAFT pretrained on the Sintel dataset [[7]]. All
experiments are conducted on a single RTX A6000 GPU.

4.3 Evaluation setup

Compared methods. We benchmark our method against the following baseline meth-
ods: TiNeuVox [[17]], K-Planes [18], V4D [20], HyperNeRF [44], 3D Gaussian Splatting
(BDGS) , Dynamic3DGaussians , and a D-3DGS baseline. D-3DGS is the dy-
namic extension of 3DGS, which stores both position and rotation for each timestep.
Evaluation metrics. We assess the methods using various metrics, including PSNR I]sz[],
SSIM []5_?[], LPIPS , FPS, Training time, and memory used to store optimized pa-
rameters. Memory consumption includes the 3D Gaussian parameters, voxel/plane rep-
resentation, and neural network parameters.

4.4 Experimental results

Quantitative results. The quantitative results on the D-NeRF dataset are detailed in
Tab.[I] Our method demonstrates a performance comparable to TiNeuVox and K-Planes



12 K. Katsumata et al.

Ground Trut V4D | Ours Ground Truth V4D | Ours

Fig. 5: Qualitative comparison on HyperNeRF . Our method offers sharp results.

Table 4: Per-scene quantitative comparison on D-NeRF scenes of different L, which stands for
the number of harmonic terms in the Fourier approximation, and other design choices. The high-
est mean score is achieved with L = 2, but increasing the complexity L (the number of co-
efficients) improves visual quality in some scenes (JUMPING JACKS and T-REX). The spline
approximations bring marginal improvements in some scenes but slower rendering. The time-
varying scale (the last row) also provides minor gains in some cases and increases the memory
size. The setting reported in Fig.Elis highlighted with a gray background.

STAND UP JACKS BALLS LEGO ‘WARRIOR Hook T-REX MUTANT Mean

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

L=1 40.21 0.994 27.22 0.952 30.27 0.972 24.26 0.940 32.42 0.937 32.84 0.980 25.15 0.957 38.04 0.994 31.30 0.965
L=2 39.10 0.993 30.95 0.980 33.29 0.984 23.15 0.922 34.15 0.956 33.19 0.981 26.22 0.962 37.45 0.993 32.19 0.971
L=3 38.09 0.990 32.78 0.984 32.54 0.979 22.12 0.881 35.36 0.955 30.23 0.967 27.73 0.956 35.06 0.985 31.74 0.962
L=4 35.83 0.984 32.93 0.982 30.39 0.969 21.06 0.855 34.38 0.947 27.74 0.946 28.17 0.952 32.58 0.974 30.39 0.951
L=5 32.89 0.976 30.71 0.977 27.68 0.959 20.20 0.825 32.64 0.933 25.43 0.923 26.11 0.927 29.09 0.960 28.10 0.934
Linear 27.77 0.973 23.10 0.921 26.68 0.959 22.27 0.922 17.39 0.869 24.98 0.946 26.82 0.955 33.98 0.993 25.37 0.942
Quadratic  29.40 0.978 23.44 0.926 27.51 0.963 22.45 0.924 17.70 0.876 25.70 0.950 26.93 0.957 33.20 0.992 25.79 0.946
Cubic 29.98 0.979 23.71 0.928 27.76 0.964 22.37 0.921 18.04 0.884 25.96 0.951 26.25 0.954 33.51 0.992 25.95 0.947

Spline (5)  38.87 0.993 31.96 0.983 32.96 0.980 23.09 0.918 34.46 0.959 31.69 0.978 26.68 0.970 37.07 0.993 32.10 0.972
Spline (6) ~ 38.00 0.992 31.84 0.984 32.81 0.980 22.25 0.903 35.24 0.965 30.87 0.974 26.98 0.974 35.94 0.991 31.74 0.970
Linear (scale)38.32 0.993 30.91 0.980 32.55 0.984 23.87 0.930 34.43 0.956 33.43 0.981 25.45 0.961 36.58 0.993 31.94 0.972

in terms of visual quality as measured by PSNR, SSIM, and LPIPS. Notably, it excels
in training time, FPS, and memory size, achieving a rendering speed that is 300 x faster
than that of K-Planes. Furthermore, our method surpasses both 3DGS and D-3DGS in
terms of visual quality without compromising rendering speed. In the DyNeRF scenes
experiment, detailed in Tab. [2] while our method does not exceed the baseline in recon-
struction quality, it shows a substantial improvement in FPS. Since the DyNeRF scenes
contain multi-view data, the D-3DGS baseline naturally improves static 3DGS, unlike
monocular scenes. Our method even attains rendering speeds that exceed real-time per-
formance at a high resolution of 1,354 x1,014. For the challenging HyperNeRF dataset,
which is captured by only two moving cameras and referenced in Tab. [3] our method
not only demonstrates rapid rendering speeds but also achieves higher average PSNR
and SSIM scores than the compared methods.

Qualitative results. Figures 3] to 5] show that our method yields faithful reconstruction
for the dynamic scenes. Unlike the structured representation, which has a fixed size of
grids, the unstructured nature of 3D Gaussians enables adaptive control of the expres-



A Compact Dynamic 3D Gaussian 13

Ours without L Ours
= ‘

Fig. 6: Qualitative comparison of disabled and enabled flow loss on DyNeRF. We highlight the
difference by zoom view.

Fig.7: Composition of two scenes. Our method allows for the addition of adding 3D objects
represented 3D Gaussians into a 3D Gaussian scene. We highlight the added object.

siveness of the representation, delivering sharper renderings. As seen with the results
for BOUNCING BALLS, since our method has discrete primitives, it sometimes fails to
reproduce smooth boundaries.

Effect of the number of parameters L. Table ] shows per-scene PSNR and SSIM
scores of K-Planes and our method with the different L (Eq. (2)). It is observed that
the optimal L for novel view synthesis varies from scene to scene, highlighting the
necessity for complex approximations to capture intricate motions effectively.

Effect of flow loss. Additionally, visual comparisons drawn from our method without
and with the flow loss (Fig. [6) reveal that incorporating the flow loss mitigates ghostly
artifacts and significantly enhances the accuracy of color reconstruction.

Design choice. Our method is very flexible and allows for the use of arbitrary approx-
imation functions and the choice of time-varying parameters. Table [4] also shows the
experimental results of other options for the design of the model to facilitate future
dynamic scene reconstruction. The linear, quadratic, and cubic baselines approximate
time-varying 3D positions with polynomials of degrees one, two, and three, respec-
tively. The Spline (5) and Spline (6) baselines approximate 3D positions with spline
approximations of five and six points, respectively. The linear (scale) baseline approx-
imates time-varying scales with the linear approximation in addition to positions and
rotations. Although a Spline baseline gives minor performance gains in some cases, it



14 K. Katsumata et al.

achieves 91 FPS for rendering, showing slower rendering than the proposed method.
The linear (scale) baseline does not show additional parameters that would result in
performance improvements. For time-varying 3D rotation, we also consider the approx-
imation with slerp. Since it does not offer performance gains while causing numerical
instability for static Gaussians, we use linear approximation for rotation. For faster ren-
dering and compact representation, we use the Fourier approximation for 3D positions
and model 3D positions and rotations as time-varying parameters.

Scene composition. Since our dynamic 3D Gaussian representation still uses pure 3D
Gaussian representation, the learned representation facilitates straightforward editing
of Gaussians. We demonstrate the composition of two scenes with our representation.
Figure[7]illustrates this by combining the MUTANT scene from the D-NeRF dataset with
the SEARED STEAK scene from the DyNeRF dataset. This demonstrates the capability
of our method in editing dynamic 3D scenes.

5 Discussion and Conclusion

Limitations and future directions. Our dynamic Gaussians are defined through all
times of the dynamic scene. This representation implicitly assumes Gaussians exist
over all times of the scene. It enables us to naturally model the rigid and non-rigid de-
formation in the scene. On the other hand, for modeling the change in topology, the
occurrence and extinction of Gaussians (e.g., fluid) is tough. Static colors cause diffi-
culty in modeling changes in illumination and color. The reconstruction capability of
the method depends on the number of parameters, so that the scene representation is
compact but results in poor rendering quality for very long sequences, requiring addi-
tional memory consumption for proper reconstruction. To overcome these limitations,
considering the lifetime of Gaussians, such as adding start and end time parameters,
will allow for the modeling of changes in scene topology, and the adaptive decision of
flexibility will leads to better trade-offs between quality and memory size.

Our Gaussian representation sacrifices the continuity and smoothness inherent in

neural field-based volume rendering. Distilling NeRFs into our proposed representation
in a manner similar to PlenOctree [69] is a potential extension of our method, promising
to enhance rendering quality while maintaining fast rendering advantage.
Conclusion. We present a compact dynamic 3D Gaussian representation enabling faith-
ful reconstruction and real-time rendering of dynamic scenes. We propose a represen-
tation for the position and rotation of 3D Gaussians as a function of time for modeling
the motion of the scene. The parameterized functions of time introduce memory effi-
ciency and robustness to the number of views per timestep. Furthermore, we introduce
the flow loss constraining the scene flow of the learned Gaussian representation with
the ground truth flow. Our experiments on synthetic and real datasets show that the
proposed method achieves real-time dynamic scene rendering even at high resolutions.
Acknowledgements This study was supported by JSPS/MEXT KAKENHI Grant Num-
bers JP24K20830, JP23KJ0381, JP23K28139, and JP22H05015, ROIS NII Open Col-
laborative Research 2024-24S1201, and the Institute of Al and Beyond of the Univer-
sity of Tokyo. The authors would like to thank D. Horita for carefully proofreading the
manuscript and N. Umetani for providing helpful advice on the method’s limitations.



A Compact Dynamic 3D Gaussian 15

References

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

. Abdal, R., Yifan, W., Shi, Z., Xu, Y., Po, R., Kuang, Z., Chen, Q., Yeung, D.Y., Wetzstein, G.:

Gaussian Shell Maps for Efficient 3D Human Generation. In: CVPR. pp. 9441-9451 (2024)

. Akhter, 1., Sheikh, Y., Khan, S., Kanade, T.: Nonrigid Structure from Motion in Trajectory

Space. In: NeurIPS (2008)

. An, S., Xu, H., Shi, Y., Song, G., Ogras, U.Y., Luo, L.: PanoHead: Geometry-Aware 3D

Full-Head Synthesis in 360 degee. In: CVPR. pp. 20950-20959 (2023)

. Attal, B., Huang, J.B., Richardt, C., Zollhoefer, M., Kopf, J., O’Toole, M., Kim, C.: Hyper-

Reel: High-Fidelity 6-DoF Video with Ray-Conditioned Sampling. In: CVPR. pp. 16610—
16620 (2023)

. Bae, J., Kim, S, Yun, Y,, Lee, H., Bang, G., Uh, Y.: Per-Gaussian Embedding-Based Defor-

mation for Deformable 3D Gaussian Splatting. arXiv preprint arXiv:2404.03613 (2024)

. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.:

Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. In:
CVPR. pp. 5855-5864 (2021)

. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A Naturalistic Open Source Movie for

Optical Flow Evaluation. In: ECCV. pp. 611-625 (2012)

. Cabral, B., Max, N., Springmeyer, R.: Bidirectional Reflection Functions from Surface Bump

Maps. SIGGRAPH 21(4), 273-281 (1987)

. Cao, A., Johnson, J.: HexPlane: A Fast Representation for Dynamic Scenes. In: CVPR. pp.

130-141 (2023)

Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., De Mello, S., Gallo, O., Guibas,
L.J., Tremblay, J., Khamis, S., et al.: Efficient Geometry-Aware 3D Generative Adversarial
Networks. In: CVPR. pp. 16123-16133 (2022)

Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: Tensorial Radiance Fields. In: ECCV.
pp. 333-350 (2022)

Chen, Z., Wang, F, Liu, H.: Text-to-3D Using Gaussian Splatting. arXiv preprint
arXiv:2309.16585 (2023)

Das, D., Wewer, C., Yunus, R., Ilg, E., Lenssen, J.E.: Neural Parametric Gaussians for
Monocular Non-Rigid Object Reconstruction. In: CVPR. pp. 10715-10725 (2024)

. Dong, Z., Chen, X., Yang, J., Black, M.J., Hilliges, O., Geiger, A.: AG3D: Learning to Gen-

erate 3D Avatars from 2D Image Collections. In: ICCV. pp. 14916-14927 (2023)

Duan, Y., Wei, F.,, Dai, Q., He, Y., Chen, W., Chen, B.: 4D-Rotor Gaussian Splatting: Towards
Efficient Novel View Synthesis for Dynamic Scenes. ACM TOG (2024)

Duisterhof, B.P., Mandi, Z., Yao, Y., Liu, J.W., Shou, M.Z., Song, S., Ichnowski, J.: MD-
Splatting: Learning Metric Deformation from 4D Gaussians in Highly Deformable Scenes.
arXiv preprint arXiv:2312.00583 (2023)

Fang, J., Yi, T., Wang, X., Xie, L., Zhang, X., Liu, W., NieBner, M., Tian, Q.: Fast Dynamic
Radiance Fields with Time-Aware Neural Voxels. In: SIGGRAPH Asia (2022)
Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-Planes: Explicit
Radiance Fields in Space, Time, and Appearance. In: CVPR. pp. 12479-12488 (2023)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: Radi-
ance Fields Without Neural Networks. In: CVPR. pp. 5501-5510 (2022)

Gan, W., Xu, H., Huang, Y., Chen, S., Yokoya, N.: V4D: Voxel for 4D Novel View Synthesis.
IEEE TVCG 30(2), 1579-1591 (2024)

Gao, C., Saraf, A., Kopf, J., Huang, J.B.: Dynamic View Synthesis from Dynamic Monocular
Video. In: ICCV. pp. 5712-5721 (2021)

Guo, Z., Zhou, W, Li, L., Wang, M., Li, H.: Motion-Aware 3D Gaussian Splatting for Effi-
cient Dynamic Scene Reconstruction. arXiv preprint arXiv:2403.11447 (2024)



16

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

K. Katsumata et al.

He, H., Yang, Z., Li, S., Dai, B., Wu, W.: OrthoPlanes: A Novel Representation for Better
3D-Awareness of GANs. In: ICCV. pp. 2299623007 (2023)

Huynh-Thu, Q., Ghanbari, M.: Scope of Validity of PSNR in Image/Video Quality Assess-
ment. Electronics Letters 44(13), 800-801 (2008)

Jouppi, N., Kurian, G., Li, S., Ma, P, Nagarajan, R., Nai, L., Patil, N., Subramanian, S.,
Swing, A., Towles, B., Young, C., Zhou, X., Zhou, Z., Patterson, D.A.: TPU v4: An Op-
tically Reconfigurable Supercomputer for Machine Learning with Hardware Support for
Embeddings. In: Proceedings of the 50th Annual International Symposium on Computer
Architecture. pp. 1-14 (2023)

Kerbl, B., Kopanas, G., Leimkiihler, T., Drettakis, G.: 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM TOG 42(4), 1-14 (2023)

Keselman, L., Hebert, M.: Approximate Differentiable Rendering with Algebraic Surfaces.
In: ECCV. pp. 596-614 (2022)

Kopanas, G., Leimkiihler, T., Rainer, G., Jambon, C., Drettakis, G.: Neural Point Catacaustics
for Novel-View Synthesis of Reflections. ACM TOG 41(6), 1-15 (2022)

Kopanas, G., Philip, J., Leimkiihler, T., Drettakis, G.: Point-Based Neural Rendering with
Per-View Optimization. In: Comput. Graph. Forum. vol. 40, pp. 29-43 (2021)

Lei, J., Wang, Y., Pavlakos, G., Liu, L., Daniilidis, K.: GART: Gaussian Articulated Template
Models. In: CVPR. pp. 19876-19887 (2024)

Li, T., Slavcheva, M., Zollhoefer, M., Green, S., Lassner, C., Kim, C., Schmidt, T., Love-
grove, S., Goesele, M., Newcombe, R., et al.: Neural 3D Video Synthesis from Multi-View
Video. In: CVPR. pp. 5521-5531 (2022)

Li, Z., Chen, Z., Li, Z., Xu, Y.: Spacetime Gaussian Feature Splatting for Real-Time Dynamic
View Synthesis. arXiv preprint arXiv:2312.16812 (2023)

Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural Scene Flow Fields for Space-Time View
Synthesis of Dynamic Scenes. In: CVPR. pp. 6498-6508 (2021)

Li, Z., Wang, Q., Cole, F., Tucker, R., Snavely, N.: DynIBaR: Neural Dynamic Image-Based
Rendering. In: CVPR. pp. 4273-4284 (2023)

Liang, Y., Khan, N., Li, Z., Nguyen-Phuoc, T., Lanman, D., Tompkin, J., Xiao, L.: Gaufre:
Gaussian Deformation Fields for Real-Time Dynamic Novel View Synthesis. arXiv preprint
arXiv:2312.11458 (2023)

Lu, Z., Guo, X., Hui, L., Chen, T., Yang, M., Tang, X., Zhu, F., Dai, Y.: 3D Geometry-Aware
Deformable Gaussian Splatting for Dynamic View Synthesis. In: CVPR. pp. 8900-8910
(2024)

Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to
Stereo Vision. In: IJCAL pp. 674-679 (1981)

Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D Gaussians: Tracking by Per-
sistent Dynamic View Synthesis. In: 3DV (2024)

Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A Large
Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Esti-
mation. In: CVPR. pp. 4040-4048 (2016)

Menze, M., Geiger, A.: Object Scene Flow for Autonomous Vehicles. In: CVPR. pp. 3061-
3070 (2015)

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF:
Representing Scenes as Neural Radiance Fields for View Synthesis. In: ECCV (2020)
Miiller, T., Evans, A., Schied, C., Keller, A.: Instant Neural Graphics Primitives with a Mul-
tiresolution Hash Encoding. ACM TOG 41(4), 1-15 (2022)

Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-Brualla,
R.: Nerfies: Deformable Neural Radiance Fields. In: ICCV. pp. 5865-5874 (2021)



44.

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

A Compact Dynamic 3D Gaussian 17

Park, K., Sinha, U., Hedman, P., Barron, J.T., Bouaziz, S., Goldman, D.B., Martin-Brualla,
R., Seitz, S.M.: HyperNeRF: a Higher-Dimensional Representation for Topologically Vary-
ing Neural Radiance Fields. ACM TOG 40(6), 1-12 (2021)

Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: Neural Radiance
Fields for Dynamic Scenes. In: CVPR. pp. 10318-10327 (2021)

Qian, S., Kirschstein, T., Schoneveld, L., Davoli, D., Giebenhain, S., NieSner, M.: Gaus-
sianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians. In: CVPR. pp. 20299—
20309 (2024)

Qian, Z., Wang, S., Mihajlovic, M., Geiger, A., Tang, S.: 3DGS-Avatar: Animatable Avatars
via Deformable 3D Gaussian Splatting. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 5020-5030 (2024)

Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: Speeding up Neural Radiance Fields
with Thousands of Tiny MLPs. In: ICCV. pp. 14335-14345 (2021)

Reiser, C., Szeliski, R., Verbin, D., Srinivasan, P., Mildenhall, B., Geiger, A., Barron, J.,
Hedman, P.: MERF: Memory-Efficient Radiance Fields for Real-Time View Synthesis in
Unbounded Scenes. ACM TOG 42(4), 1-12 (2023)

Schonberger, J.L., Zheng, E., Frahm, J.M., Pollefeys, M.: Pixelwise View Selection for Un-
structured Multi-View Stereo. In: ECCV. pp. 501-518 (2016)

Schonberger, J.L., Frahm, J.M.: Structure-from-Motion Revisited. In: CVPR (2016)

Seitz, S.M., Cutless, B., Diebel, J., Scharstein, D., Szeliski, R.: A Comparison and Evaluation
of Multi-View Stereo Reconstruction Algorithms. In: CVPR. pp. 519-528 (2006)

Shao, R., Zheng, Z., Tu, H., Liu, B., Zhang, H., Liu, Y.: Tensor4D: Efficient Neural 4D
Decomposition for High-Fidelity Dynamic Reconstruction and Rendering. In: CVPR. pp.
16632-16642 (2023)

Song, L., Chen, A., Li, Z., Chen, Z., Chen, L., Yuan, J., Xu, Y., Geiger, A.: NeRFPlayer: A
Streamable Dynamic Scene Representation with Decomposed Neural Radiance Fields. IEEE
TVCG 29(5), 2732-2742 (2023)

Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: DreamGaussian: Generative Gaussian Splatting
for Efficient 3D Content Creation. arXiv preprint arXiv:2309.16653 (2023)

Teed, Z., Deng, J.: RAFT: Recurrent All-Pairs Field Transforms for Optical Flow. In: ECCV.
pp. 402-419 (2020)

Tewari, A., Thies, J., Mildenhall, B., Srinivasan, P., Tretschk, E., Wang, Y., Lassner, C., Sitz-
mann, V., Martin-Brualla, R., Lombardi, S., Simon, T., Theobalt, C., NieBner, M., Barron,
J.T., Wetzstein, G., Zollhoefer, M., Golyanik, V.: Advances in Neural Rendering. In: Comput.
Graph. Forum. vol. 41, pp. 703-735 (2022)

Tian, FE, Du, S., Duan, Y.: MonoNeRF: Learning a Generalizable Dynamic Radiance Field
from Monocular Videos. In: ICCV. pp. 17903-17913 (2023)

Tretschk, E., Tewari, A., Golyanik, V., Zollhoefer, M., Lassner, C., Theobalt, C.: Non-Rigid
Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Dynamic Scene
From Monocular Video. In: ICCV (2021)

Tretschk, E., Tewari, A., Golyanik, V., Zollhofer, M., Lassner, C., Theobalt, C.: Non-Rigid
Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Dynamic Scene from
Monocular Video. In: ICCV. pp. 12959-12970 (2021)

Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-Dimensional Scene Flow.
In: CVPR. pp. 722-729 (1999)

Vedula, S., Rander, P., Collins, R., Kanade, T.: Three-Dimensional Scene Flow. IEEE TPAMI
27(3), 475-480 (2005)

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From
Error Visibility to Structural Similarity. IEEE TIP 13(4), 600-612 (2004)



18

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

K. Katsumata et al.

Wu, G, Yi, T, Fang, J., Xie, L., Zhang, X., Wei, W., Liu, W., Tian, Q., Wang, X.: 4D Gaus-
sian Splatting for Real-Time Dynamic Scene Rendering. arXiv preprint arXiv:2310.08528
(2023)

Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan, N., Tombari, F., Tompkin, J.,
Sitzmann, V., Sridhar, S.: Neural Fields in Visual Computing and Beyond. Comput. Graph.
Forum (2022)

Xu, D., Yuan, Y., Mardani, M., Liu, S., Song, J., Wang, Z., Vahdat, A.: AGG: Amortized
Generative 3D Gaussians for Single Image to 3D. arXiv preprint arXiv:2401.04099 (2024)
Yang, Z., Yang, H., Pan, Z., Zhu, X., Zhang, L.: Real-Time Photorealistic Dynamic Scene
Representation and Rendering with 4D Gaussian Splatting. arXiv preprint arXiv:2310.10642
(2023)

Yi, T., Fang, J., Wu, G., Xie, L., Zhang, X., Liu, W,, Tian, Q., Wang, X.: GaussianDreamer:
Fast Generation from Text to 3D Gaussian Splatting with Point Cloud Priors. arXiv preprint
arXiv:2310.08529 (2023)

Yu, A., Li, R, Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for Real-Time Render-
ing of Neural Radiance Fields. In: ICCV. pp. 5752-5761 (2021)

Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The Unreasonable Effectiveness
of Deep Features as a Perceptual Metric. In: CVPR. pp. 586-595 (2018)

Zheng, E., Ji, D., Dunn, E., Frahm, J.M.: Sparse Dynamic 3D Reconstruction from Unsyn-
chronized Videos. In: CVPR. pp. 44354443 (2015)

Zielonka, W., Bagautdinov, T., Saito, S., Zollhofer, M., Thies, J., Romero, J.: Drivable 3D
Gaussian Avatars. arXiv preprint arXiv:2311.08581 (2023)

Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: EWA Splatting. IEEE TVCG 8(3), 223-238
(2002)



	A Compact Dynamic 3D Gaussian Representation for Real-Time Dynamic View Synthesis

