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Abstract. This document supplements our main manuscript entitled
FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Ob-
ject Pose Estimation. We first present more details about our proposed
architecture for self-supervision, as well as some detailed training ob-
jectives from Sec. B, which is extended from Sec. 3 in the main paper.
We further provide additional quantitative results, an ablative study and
more qualitative results in Sec. C, Sec. D and Sec. E, respectively. Limi-
tations are discussed in Sec. F. We also provide a discussion of potential
negative societal impact in Sec. G.

A More Implementation Details

Rendered images generation. We render multiple images around P0 online.
Given a pose P0, a sef of small random perturbations ∆i=[xi

∆, yi∆, zi∆, yawi
∆,

pitchi
∆, rolli∆]Ni=1 is employed to generate a set of PN . Subsequently, N synthetic

images {Isi }Ni=1 are rendererd with the object model M. We only render a syn-
thetic image based on the P0 and the random noise is set to x∆, y∆, yaw∆, pitch∆,
roll∆ ∼ U (0, 15), as well as z∆ ∼ U (0, 50). In the self-supervised stage, we take
x∆, y∆, yaw∆, pitch∆, roll∆ ∼ U (0, 7.5), as well as z∆ ∼ U (0, 15).

B Detailed Training Objectives

During our pre-training stage, we train the network with labeled data to predict
both the flow and object pose iteratively. To supervise them in each iteration,
we initially obtain the ground-truth flow f̃ based on pose P0 and the ground-
truth pose P̃, and then compute the supervised loss Lsup. On the other hand,
we establish multi-level alignment terms for self-supervised training, including
the image-level terms Lphoto, Lwarp−mask, Lflow, the feature-level term Lfeat,
and Lpose. In this section, we introduce the details of Lsup, Lflow and Lpose.
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Lsup for Pre-training. For training the network with the labeled data in the
pre-training stage, we use the flow loss Lflow [2] and the pose loss Lpose [2, 7,8]
as follows:

Lsup = γ5Lpose(P̃,Ps) + γ6Lflow(f̃ , f
s), (1)

where (f̃ , P̃) is the ground-truth label associated with the predicted result (fs,
Ps). In our experiment, the corresponding loss weights γ5 and γ6 are set to 10
and 0.1, respectively. Unlike [2], which used only synthetic data for Lsup, we
compute Lsup using the augmented synthetic data by our proposed FFT-based
strategy.

Flow Loss for Self-supervision. To find reliable predictions for pseudo labels,
our teacher network assesses the consistency of the predicted flow between N
synthetic images and their corresponding real image by the standard deviation,
as in [1]. Specifically, the standard deviation is calculated as:

σj = std({fij + ur
ij}Ni=1), 1 ≤ j ≤ S, (2)

where fij is the predicted flow by the teacher network at iteration j and ur
ij

denotes the pixel location in the real image. Only when the standard deviation of
the pixel in these predictions falls below a specified threshold σ0 we consider it as
a pseudo label f tea, and compute Lflow(f

tea, fstu) for supervising the predictions
fstu of the student network. For simplicity, we employ σ0 = 1 throughout the
experiments.

Pose Loss for Self-supervision. In works for direct pose estimation, the
choice of loss function is crucial for pose optimization. We employ a point-
matching loss [2, 7, 8] to align the 3D points respectively transformed by the
pseudo-label pose Ptea = [Rtea|ttea] and the predicted pose Pstu = [Rstu|tstu],
which is computed as:

Lpose =
1

T

T∑
i=1

∥(Rteapi + ttea)− (Rstupi + tstu)∥1, (3)

where pi is a 3D point uniformly sampled from the object model’s surface and T
denotes the total number of points (We choose 1000 points in our experiments).

C Additional Quantitative Results

Sensitivity to errors in P0. We experimented on ROV6D with different P0,
i.e., GDRN and DeepIM from Tab. C.1. We can see that FAFA significantly
enhances both results, highlighting its robustness to errors in P0.
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Table C.1: Evaluation of sensitivity to errors in P0 on the ROV6D dataset.

Method for P0
ADD-S 5° 5 cm MEAN0.05d 0.1d

DeepIM [4] 88.81 94.56 81.26 81.04 86.42
GDRN [7] 94.03 96.96 87.87 86.71 91.39

Table C.2: Analysis on the YCB-V dataset.

Initial Self-supervision w/ Real GT
PFC 38.60 67.40 69.20
FAFA (OURS) 38.60 68.17 70.93

Running speed. During the self-supervised inference stage on a workstation
with an NVIDIA RTX-3090 GPU, FAFA processes a 1920×1080 input image in
approximately 75ms for a single object, while PFC takes ≈ 113ms. This under-
scores the efficacy of our approach by the removal of the need for PnP/RANSAC.

Analysis on the YCB-V dataset. Our approach not only excels in challeng-
ing underwater scenarios but also achieves state-of-the-art in general contexts.
The ADD(-S) results on YCB-V, as shown in Tab. C.2, demonstrate the supe-
riority of FAFA over PFC [1].

D Additional Ablation Study

Evaluation of Data Efficiency for Self-supervision We investigate the real-
world data efficiency in self-supervised training. On DeepURL [3], we trained our
network with varying quantities of real images for self-supervision, specifically
0.5K, 1K, 2K, and 3K images, respectively, followed by testing on the same
set of 2K unseen images. A detailed comparison of the ADD 0.05d, 5°, and
5 cm metrics is presented in Tab. D.3. Upon increasing the number of self-
supervised images from 0.5K to 1K, a notable enhancement is observed across
all three metrics. However, despite further expanding the number of self-training
images, the metrics exhibited negligible improvement. This observation reveals
that nearly optimal data efficiency is achieved when the self-training is conducted
with a dataset comprised of 1K real images. Therefore, in all our self-supervision
experiments, we exclusively employ 1K real images for self-supervised training.

Evaluation of Freezing Batch Normalization. We study the effectiveness
of freezing the batch normalization (BN) layers on the DeepURL [3] dataset.
Fig. D.1 demonstrates the results of self-supervised training w.r.t. iterations un-
der the metrics 5° and 5 cm. Here we empirically set 12.5K as the maximum
number of iterations. The result indicates that freezing the BN layers during the
self-training process enhances the model’s generalization performance. Essen-
tially, by freezing the BN layers, we preserve the normalization parameters that
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Table D.3: Ablation study of data efficiency for self-supervision. The metrics ADD
0.05d, 5° and 5 cm when the network self-trained by different numbers of real images
and reported on the same unseen test split.

Num ADD 0.05d 5° 5 cm
0.5K 72.95 63.20 45.70
1K 76.45 65.70 50.50
2K 76.45 65.55 50.93
3K 76.35 66.85 51.10
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Fig.D.1: Ablation study of freezing the batch normalization layers on DeepURL.

the model learned during pre-training. This prevents the BN layers from overfit-
ting to a specific target domain, thereby maintaining the model’s generalization
capability when applied to new real-world data.

Comparison of FFT-based Augmentation Strategy. We compare our
FFT-based augmentation strategy with the strategy involving amplitude re-
place, wherein the amplitude replace operation directly exchanges the amplitude
components between the synthetic and real images. More specifically, the aug-
mented image is reconstructed by utilizing the amplitude component from the
real image and the phase information from the synthetic image. Fig. D.2 shows
the augmented images generated by amplitude mix and amplitude replace op-
erations, revealing that direct amplitude replacement could introduce color dis-
crepancies. Compared with images where amplitude has been replaced, those
subjected to amplitude blending exhibit a more uniform appearance. Tab. D.4
compares the performance of our FFT-based augmentation strategy with the
amplitude replace strategy on the DeepURL [3] dataset. Both before and af-
ter self-supervision, the results demonstrate that our FFT-based augmentation
strategy surpasses the amplitude replace strategy.
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Table D.4: Comparison of FFT-based augmentation on DeepURL. We compare our
method with a network that employs amplitude replace operation during the pre-
training stage. Furthermore, we conduct self-supervised training on these pre-trained
networks individually. The best label-free method is highlighted in bold.

Row Method
ADD

5° 5cm MEAN
0.05d 0.1d

B0 OURS (LB) 18.62 73.36 48.10 38.50 44.64
B4 B0: Pre-training → w/ amplitude replace 9.56 49.81 47.72 27.32 33.60
C0 OURS 76.56 97.64 68.70 50.92 73.46
C4 C0: → Pre-training with B4 68.20 97.04 64.02 41.31 67.64
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Fig.D.2: Comparison of FFT-based augmentation strategies.

E More Qualitative Results

We additionally present more qualitative results of our approach with state-of-
the-art methods on the ROV6D [6] and DeepURL [3] datasets in Fig. E.3 and
Fig. E.4, respectively. Note that [2–5, 7] are trained on the synthetic dataset,
while our proposed method and PFC [1] are further self-trained by unlabeled
real-world 1000 images. In the depicted images, the green and red bounding
boxes respectively represent the ground truth and prediction. As can be seen,
our predicted poses consistently exhibit better alignments with the ground-truth
poses compared to the competitors, which demonstrates the superiority of the
proposed frequency-aware flow-aided self-supervision framework.

F Limitations and Future Works

Although our current method utilizes data from a single viewpoint only, pose
sampling and pose refinement could potentially be adapted and enhanced to
accommodate multiple viewpoints. Our approach necessitates several steps, en-
compassing initial pose estimation from RGB-based images, pre-training, and
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Fig. E.3: Qualitative results on ROV6D. The green and red bounding boxes represent
the ground truth and prediction, respectively.

self-supervised refinement. Consequently, this process implies more complex than
common end-to-end methods. Additionally, exploring target pose estimation for
underwater objects not encountered before is an intriguing area of research.
Hence, a potential prospect for future research lies in extending FAFA into an
end-to-end version, with a key focus on multi-view, unseen object pose esti-
mation. This advancement will significantly foster the applicability of 6D pose
estimation approaches in challenging wild underwater environments.

G Discussion of Potential Negative Societal Impact

Privacy. This paper utilizes the publicly available underwater robotic datasets,
ROV6D [6] and DeepURL [3]. These datasets provide images collected from real-
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