
InstructGIE: Towards Generalizable Image
Editing

Zichong Meng⋆1, Changdi Yang⋆1, Jun Liu1, Hao Tang⋆⋆2, Pu Zhao⋆⋆1, and
Yanzhi Wang⋆⋆1

1 Northeastern University, Boston MA 02115, USA
2 Peking University, Beijing 100871, China &

Carnegie Mellon University, Pittsburgh PA 15213, USA

shows.draw.io OutputQuery Image

Like in Game

Instructions OutputQuery Image

Instructions OutputQuery Image

Instructions OutputQuery Image

As a Female

Instructions OutputQuery Image

Instructions OutputQuery Image

Add a Red Hat

Make His Jacket Red

Add a Cow

More Modern Design

Fig. 1: Demo results of the proposed InstructGIE framework on various image ma-
nipulation tasks to both humans and scenes. By our proposed method, our model can
generalize to generate the desired output with great detail qualities.

Abstract. Recent advances in image editing have been driven by the
development of denoising diffusion models, marking a significant leap
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forward in this field. Despite these advances, the generalization capabil-
ities of recent image editing approaches remain constrained. In response
to this challenge, our study introduces a novel image editing framework
with enhanced generalization robustness by boosting in-context learning
capability and unifying language instruction. This framework incorpo-
rates a module specifically optimized for image editing tasks, leveraging
the VMamba block and an editing-shift matching strategy to augment
in-context learning. Furthermore, we unveil a selective area-matching
technique specifically engineered to address and rectify corrupted details
in generated images, such as human facial features, to further improve
the quality. Another key innovation of our approach is the integration
of a language unification technique, which aligns language embeddings
with editing semantics to elevate the quality of image editing. Moreover,
we compile the first dataset for image editing with visual prompts and
editing instructions that could be used to enhance in-context capability.
Trained on this dataset, our methodology not only achieves superior syn-
thesis quality for trained tasks, but also demonstrates robust generaliza-
tion capability across unseen vision tasks through tailored prompts. Our
project page is available at https://cr8br0ze.github.io/InstructGIE.
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1 Introduction

As a crucial task in computer vision, image editing has witnessed significant
improvements enhanced with the increasingly popular denoising stable diffusion
techniques in recent years [22,25,38,40,41]. Given a set of text or image prompts
as generation constraints or instructions, diffusion-based image editing can fol-
low the instructions and synthesize an edited image. However, since the model
does not have the capability to accurately model all possible samples in the
conditional distribution space [17], if specific instructions are not included in
the training dataset, current diffusion-based image editing methods can hardly
generate satisfactory results. Thus, editing performance largely depends on the
training dataset without superior generalization capabilities.

On the other hand, large language models (LLMs) have proven extraordinary
abilities to learn from contexts, referred to as in-context learning, which allows
LLMs to perform unseen tasks by providing a combination of input-output ex-
amples and a query input. Inspired by the potential to enhance the generalization
of the model with LLMs, [38,41] explore in-context learning for computer vision
tasks, allowing them to perform unseen tasks with novel vision-language prompt
designs. However, these methods are not tailored for image editing applications,
leading to unsatisfying synthetic qualities with inaccurate or incorrect output
and lack of detail. To improve the generalization of image editing with improved
synthetic image quality, it is crucial to effectively understand the text & image
prompts and specifically control image editing details, which is challenging in
the current literature.

https://cr8br0ze.github.io/InstructGIE
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In this work, we propose InstructGIE, an image editing framework with en-
hanced generalizability. We improve image editing performance from both visual
and text aspects. (i) For the visual information, we incorporate a VMamba-based
module to specifically enhance the image editing outputs. As VMamba [26] has
proven its better performance in capturing in-context information from inputs
with larger receptive fields [26], we leverage VMamba and propose an editing-
shift matching strategy to augment in-context learning. Furthermore, since cur-
rent image editing works do not perform well in generating correct features with
accurate details, we unveil a selective area-matching technique specifically en-
gineered to address and rectify corrupted details in generated images, such as
human facial features, to further improve the quality. (ii) Another key inno-
vation of our approach is the integration of a language unification technique,
which aligns language embeddings with editing semantics to elevate the quality
of image editing. Our framework not only achieves superior in-context genera-
tion for trained tasks but also demonstrates robust generalization across unseen
vision tasks. Moreover, we compile a publicly available image editing dataset
with plenty of visual prompts and editing instructions for better generalization
evaluation of image editing. Our contributions are summarized as follows:

– We propose an image editing framework, including in-context learning en-
hancement and language unification strategies, specifically designed to en-
hance generalization ability from both visual and text domains.

– We compile the first dataset for image editing with visual prompts and edit-
ing instructions that could be used to enhance in-context capability.

– We conduct extensive experiments and achieve great generalization ability in
the multiple unseen image editing task, both quantitatively and qualitatively.

2 Related Works

2.1 Denoising Stable Diffusion Based Image Editing

Denoising Stable Diffusion [16,35,36] based image editing could follow guidance
from text or image prompts. With the foundation of text-guided models offering
rich generative capabilities, there has been a surge in research aimed at adapting
these models for image manipulation tasks from textual descriptions. To steer
the image editing process in the desired direction, the use of models like CLIP
to fine-tune diffusion models has become a common practice. Although these
methods [3,22,41] have shown impressive results, they often involve costly fine-
tuning processes. Recent innovations [14] have introduced techniques that inject
cross-attention into the models to more effectively edit specific semantic areas
within the spatial feature maps. Further advancements [24] have enhanced these
techniques by adding semantic loss or applying attention loss to refine the inte-
gration of plugged features, improving the precision and quality of the editing
outcomes. [38] proposes a framework that could learn instructions from visual
image pairs for more accurate editing and firstly formulate this task as an image
inpainting problem.
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2.2 Generalization Capability in Visual Tasks

In-context learning is widely applied in the field of natural language processing
(NLP), enabling models to adapt to new tasks such as translation, question an-
swering, and complex reasoning. NLP models utilize in-context examples, com-
prising text and corresponding labels, to tackle tasks they haven’t seen before.
However, applying in-context learning to the visual domain introduces more chal-
lenges and remains less explored. A significant hurdle is the nature of fixed-size
input requirements for vision models, as opposed to variable-length text inputs
that can be managed by language models. Vision models generally struggle with
processing inputs of varying sizes, making it impractical to process multiple im-
age prompts in one-shot for global understanding. Moreover, in intricate visual
understanding, specific instructions are often implied from a limited set of im-
age examples rather than explicitly stated, which poses additional difficulties for
vision models in identifying and understanding high-level visual relationships.

Recent strides in applying masked image modeling have marked a step for-
ward in improving in-context learning for vision models. The method proposed
by [41], employing a masked autoencoder-based technique, predicts a missing
image within a two-by-two grid, using two images as in-context examples and
another as the query. This concept was later expanded by [38] with a multitask
framework. Despite their progress, such inpainting methods are limited by the
necessity of a fixed number of in-context examples and increased memory de-
mands. Painter, highlighted in [40], exemplifies an inpainting approach tailored
for versatility across various vision tasks.

In contrast, inspired by ControlNet [44], [41] refines the framework by adding
an additional pair of example images and employing a multitask supervised fine-
tuning method. Prompt diffusion excels in visual in-context learning. However,
it faces certain limitations or challenges in its practical applications.

2.3 Dataset for Diffusion-based Image Editing

Currently, various types of datasets are used for training in diffusion-based image
editing. There are datasets that concentrate on specific domains like CelebA [27]
and FFHQ [19] for human face image manipulation, AFHQ [7] for animal face
image editing, LSUN [42] for object modification, and WikiArt [29] for style
transfer. In-the-wild video datasets could also be leveraged to train image editing
tasks. The Scannet dataset [9] encompasses a vast array of more than 1,500 in-
door scenes from various settings, such as apartments, offices, and hotels, provid-
ing extensive annotations. The LRW dataset [8], tailored for lip reading tasks, in-
cludes more than 1000 video utterances of 500 distinct words. The UBC-Fashion
dataset [43] features 600 videos spanning various clothing categories, with 500
videos allocated for training and 100 for testing, guaranteeing no repetition of
individuals in the training set. The DAVIS dataset [43] (Densely Annotated
VIdeo Segmentation), a widely recognized benchmark for video object segmen-
tation, contains 150 videos in total. There are also image editing works proposing
to generate datasets with editing instructions. InstructPix2pix [3] collects over
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450,000 training image pairs. For each pair, given an image with its caption, it
first uses a finetuned GPT-3 [4] to generate an editing instruction and an edited
image caption. Then it employs Stable Diffusion and the Prompt-to-Prompt al-
gorithm [14] to generate edited image following the caption. However, currently
there are no datasets with multiple image pairs under one editing instruction,
which is crucial to enhance the generalization ability of image editing.

3 Preliminary

Recent advances in generative models have been significantly driven by the
emergence of diffusion models, which have set new benchmarks in image cre-
ation [10,21,37]. These models have found applications across a broad spectrum
of areas [2, 5, 20, 39, 45], demonstrating their versatility and effectiveness. The
fundamental concept behind diffusion models involves starting with an image
that is initially just random noise xT ∼ N (0, I) and progressively refining this
image step by step until it becomes a high-quality, realistic image x0. This refine-
ment process involves generating intermediate samples xt (for t ∈ {0, . . . , T}),
where each sample is defined as:

xt =
√
αtx0 +

√
1− αtϵt, (1)

where the parameter αt sets the pace of the diffusion process, ranging from
0 = αT < αT−1 < · · · < α1 < α0 = 1, and ϵt ∼ N (0, I) represents the added
noise. The model refines the image by applying a neural network fθ (xt, t) to each
sample xt, followed by the addition of Gaussian noise to produce the next sample
xt−1. This neural network is optimized to achieve a denoising goal, striving for
fθ (xt, t) ≈ ϵt, resulting in a generative process that closely mimics the desired
image distribution.

Expanding this framework to conditional generative modeling, the process
involves conditioning the neural network fθ (xt, t,y) on an additional input y,
enabling the generation of images from a distribution conditioned on y. This con-
ditional input could be anything from a low-resolution image, a category label, or
a descriptive text sequence. Leveraging the advancements in LLMs [33] and hy-
brid vision-language models [31], text-to-image diffusion models are developed.
These models allow for the creation of detailed, high-resolution images from
mere text descriptions, starting with a low-resolution image generated through
the diffusion process, which is subsequently refined into a high-resolution image
using additional models.

4 The Proposed Method

We present our framework pipeline in Fig. 2. For efficient training and better
controllability, we adopt a line of techniques with popular architectures such as
ControlNet [44] and Stable Diffusion [34] to design a generalizable image editing
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Fig. 2: Overall architecture of InstructGIE. The lower pipeline is for both training and
inference processes where the model obtains unified editing instructions outputted by
Instruction Unification Module U and combines with visual prompted input ImgVPcon

to pass through Zero-VMamba integrated Stable Diffusion model with ControlNet for
output image. The upper pipeline is for training only which compares output image and
training ground truth Imgtrain and computes editing shift loss Les with Editing Shift
Module and selective area matching loss Lsam with Selective Area Matching Module.

tool with accurate high-quality outputs. Specifically, we introduce enhanced in-
context learning both at the architecture level and training level to improve
the image quality. Furthermore, language instruction unification is adopted to
maximize the generalization ability for unseen editing tasks. Moreover, selective
area matching is proposed to further improve the output quality with full details.

4.1 Enhanced In-Context Learning

Visual prompting based on inpainting is an effective visual in-context learning
method in various computer vision tasks [1,40], which is applied in image editing
tasks [38] recently. However, the methods perform poorly in quality when dealing
with unseen image manipulation tasks. Therefore, we propose the enhanced in-
context learning specifically tailored for generalizable image editing.

Reforming Conditioned Latent Diffusion Model. To improve the gener-
alization ability of image editing, it is crucial for the framework to explicitly
capture low-level visual editing contexts. Current diffusion-based image editing
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ERF of ResNet-50 ERF of VIT-L/14 ERF of VMamba-T

Fig. 3: Effective Reception Field (ERF) of ConvNet, ViT, VMamba based model
architectures.

methods [30, 38] that involve visual prompting either adopt ConvNet [23] or
ViT [11] as the vision encoder for visual prompts. However, these methods fail
to generalize well as they are not able to capture enough visual editing contexts
(see Fig. 3). To address this, we formulate the visual prompted condition as a
single image ImgVPcon = {Imgin

0 , Imgout
0 , Imgin

1 , Grey}, as shown in Fig 2,
with a global effective receptive field (ERF).

Moreover, we further propose to reform the conditioned latent diffusion model.
Inspired by the recent visual state space model VMamba [26] which exhibits a
better global ERF and also emphasizes shifting boundaries of input’s four quad-
rants, we propose to adopt a vision encoder based on Zero-VMamba to fit our
structure. Specifically, the vision encoder Gven comprehends the visual prompted
condition in latent space xvpc as follows,

evpc = Gven(xvpc;Θg), (2)

where evpc is the processed embedding of the visual prompted condition, and Θg

is the model parameters initialized to zeros.
To further improve the performance, after each ControlNet trainable copied

modules Fc with parameters Θc, we propose to link and inject the processed
visual prompted condition information to the frozen Stable Diffusion model F
with parameters Θ through zero-VMamba layer G. We use two instances of
VMamba with parameters θg1 and θg2 respectively. The complete model then
computes the following,

yvpc = F(x;Θ) + G(F(x+ G(xvpc;Θg1);Θc);Θg2), (3)

where yvpc is the output of our conditioned diffusion model block.
Our conditioned latent diffusion model can process all four quadrants in

our visual prompted conditions with a global receptive field, while it does not
generate random noises during initial training steps.

Editing-Shift Matching. Besides the architecture innovation, we incorporate
an editing-shift-matching technique to enhance in-context learning ability in
image editing with more accurate detailed outputs.
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In specific, for each training ground truth Imgtrain = {Imgin
0 , Imgout

0 , Imgin
1 ,

Imgout
1 }, we calculate a implicit editing shift value using CLIP [32] image em-

bedding:

T (Img) =
∑1

i=0 CLIP(Imgin
i )− CLIP(Imgout

i )

2
. (4)

During the training process, after predicting the noise, we use it to reverse the
noised input and obtain a pseudo output image ImgPO = {POin

0 , POout
0 , POin

1 ,
POout

1 }. Our framework then calculates the editing transfer value of the pseudo
output image and deduces a editing shift loss to optimize during our training
via the cosine similarity of the two design transfer values:

Les = 1− T (ImgPO) · T (Imgtrain)

||T (ImgPO)|| × ||T (Imgtrain)||
(5)

Through editing-shift matching, our model can better comprehend how edit-
ing should be done within a visual context level through an implicit editing
shift value. Furthermore, this implicit editing shift value can further guide the
sampling process creating a controllable editing.

4.2 Language Instruction Unification

Previous works that utilize visual prompting in image editing tend to focus
more on visual instructions and believe language instructions can be vague and
unstable [38]. We believe that the potential of text prompts is not fully explored
in image editing. Language instructions have significant impacts on diffusion
model outputs. Language instructions with the same meaning can still result in
entirely different outputs due to different processed language embeddings.

To improve image editing and explore language instructions, we propose a
novel approach, language instruction unification. During the training process,
for each batch of training data, we randomly sample 50% of training data, col-
lect their language editing instructions l, and process them through a frozen
lightweight LLM, Open Llama 3b V2 Quant 4 [13] denoted as U . The LLM U is
fixed prompted with a fixed random seed to uniformly reformulate the language
instruction l better for machine-level understanding. The LLM U will output a
unified language editing instruction l′.

l′ = U(l) (6)

We then augment the training data with unified language editing instructions.
During the inference, each language editing instruction l is passed through

the frozen LLM U for language instruction unification and then sent to our
conditioned diffusion model.

By adopting language instruction unification for training data augmenta-
tion during the training, our conditioned diffusion model can learn diverse non-
uniformed editing instructions to build up the model’s knowledge distribution
with unified language prompts. Adopting language instruction unification during
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inference aligns with the training, therefore, greatly minimizing the possibility
of diverse quality in edited outputs and maximizing the ability to generalize to
unseen editing tasks.

4.3 Selective Area Matching

Diffusion-based image editing models usually suffer from low quality in specific
details and this bottleneck appears to be more crucial in generalizable image
editing methods [30, 38]. The details of human and animal images are easily
distorted in these methods.

A naive solution might be utilizing negative prompts [34] like ‘do not draw
hands with 6 fingers’ in general text-to-image tasks. However, in image editing,
it is challenging to apply negative prompts. Users typically can not foresee the
specific details after-edited outputs, therefore they are not able to construct
appropriate negative prompts. Besides, negative prompts may limit the artistic
potential of image editing models.

To properly address this issue for generalizable image editings, we propose an
optimization method, namely selective area matching, that targets the difference
in the chosen detailed editing area between the original training ground truth
Imgtrain and the reversed pseudo output ImgPO.

In particular, during the training process, we incorporate a frozen Mask2Former
model [6] M to obtain panoptic segmented training image information including
segmented masks and class information C.

segmask, C = M(Imgtrain) (7)

After that, our framework processes the class information using the same lightweight
LLM U described in Sec. 4.2 to filter out pre-defined classes including living crea-
tures and humans requiring special attention for addressing the details.

Cfiltered = {c ∈ C|U(c, selected classes) = 1} (8)

Based on selected class labels, the framework then deduces a segmented binary
mask for the selected editing area.

[mask]i =

{
1 if cls([segmask]i) ∈ Cfiltered

0 otherwise
(9)

During the training process, our framework calculates and optimizes the selective-
area matching loss by

Lsam =
1

N

N∑
i=1

(([ImgPO]i · [mask]i)− ([Imgtrain]i · [mask]i))
2 (10)

where N as the total pixel number in the image.
With selective area matching, image editing does not need negative prompts

to deal with distorted details in images, which can make the most of the model’s
artistic editing capacity to generate high-quality outputs with great details. It is
only incorporated during training, which does not change the inference, greatly
saving inference efforts compared with negative prompts.
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Edited Caption       : "a photo of canal in the lake with vivid color"

Phase 1: Data Generation

1. Generate text edits:

GPT-3Caption      : "a photo of canal in the lake "

Instruction       : "make color more vivid" 

Edited Caption       : "a photo of canal next to a mountain with vivid color"
Caption      : "a photo of canal next to a mountain "

2. Generate image pairs under same edit caption:

Stable Diffusion
+ Prompt2Prompt

Edited Caption       : "a photo of canal next to a
mountain with vivid color"

Caption      : "a photo of canal next to a mountain "

3. Generate more image pairs using different edit caption

Random 
concate

Phase 2: Data Processing

Fig. 4: Dataset generation process Our dataset generation consists of two phases.
Data Generation is to generate sets of image pairs under one editing caption. Data
Processing is randomly pick image pairs under the same editing instruction and con-
catenate them together as one input for training.

5 Visual Prompt Dataset For Image Editing

Traditional image editing datasets only contain editing image pairs with a small
amount of similar editing instructions. To the best of our knowledge, there is no
open-sourced image editing dataset that is explicitly designed for image editing
with visual prompting, which utilizes multiple different image pairs for each
editing instruction to provide a general demonstration in various cases.

Therefore, we introduce and open source a new dataset that is designed
specifically for image editing tasks utilizing visual prompts. Our dataset gen-
eration pipeline is shown in Fig. 4 with 2 phases: Data Generation and Data
Processing. In Data Generation phase, we first fine-tune GPT-3 [4] for 2 epochs
with 700 groups of human-written edits, each consisting of 5 different pairs of
input and edited captions with one editing instruction. Then as shown in step 1,
we generate around 3500 groups of editing prompts using the fine-tuned GPT-3
model. In each group, there is one instruction E0 and five pairs of caption and
edited caption (I0, O0), (I1, O1), ..., (I4, O4). In step 2, similar to InstructPix2Pix,
we then also adopt Prompt-to-Prompt for image generation. For each input and
edited caption pair, we generated 50 times each with random noise and followed
InstructPix2Pix to keep the best one image pair using CLIP-based metric. In
addition, we also make sure for each editing instruction, there are at least two
pairs of images. In step 3, we generate more image pair sets using in the same
way. With filtering, we obtained around 12,000 images with around 2,000 editing
instructions. In data preparing, we randomly choose 2 pairs of images under the
same editing instruction and concatenate them for training.

6 Experiments

6.1 Experimental Settings

Datasets. To fairly compare our methods with baseline methods, we conduct
both qualitative and quantitative experiments on our proposed synthetic dataset
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Editing Instructions SDEdit (E)Query Image InstructPix2Pix PromptDiffusion Ours

Crown Him Like A King

As a Precious Oil Painting

Change to Pink Hair

Light Them On Devastating Fire!

Acrylic Paint It

Fig. 5: Qualitative Comparison on our Test Dataset. We conducted experiments
on various scenarios, including human, architecture and landscape.

that involves over 12,000 filtered images and 2,000 filtered editing instructions.
All single input images have a resolution of 512×512 and are resized to 256×256
for training and testing purposes.
Implementation Details. In our approach, we split the dataset with 80% for
training and 20% for testing. As demonstrated in Fig. 2, two image pairs are
concatenated into one 512 × 512 image with the same editing instructions as
Imgtrain and mask the fourth quadrant with a grey color as ImgVPcon. We pre-
pare the in-domain test dataset in the same format. For out-of-domain testings,
we ensure that both the visual instruction pairs and the text instructions are
not used during training, to best simulate how models perform in real-life image
editing generalization scenarios.

For baselines, we use their original configurations to train their model. In
our method, we only fine-tune the additional ControlNet for 5000 steps with a
batch size of 1024 and a learning rate at 1 × 10−4. During training, we set the
classifier-free scale the same as the original ControlNet. And we randomly drop
15% of language or visual editing instructions to further enhance our model’s
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Table 1: Quantitative results comparison between our method and baseline methods.
Quantitative results shows our method excels the baseline methods in both FID and
CLIP directional Similarity score in a great margin.

SDEdit (E) InstructPix2Pix PromptDiffusion Ours
FID ↓ 21.67 17.87 13.75 7.57
CLIP DirSim ↑ 0.11 0.17 0.21 0.27

generalization ability. Our implementation utilizes PyTorch and is trained on 4
Tesla A100-40G GPUs with AdamW optimizer.
Comparison Methods. To evaluate the effectiveness of our work, we com-
pare with other state-of-the-art image editing frameworks, including SDEdit [28],
Instruct-Pix2pix [3] and PromptDiffusion [41]. We adopt two quantitative met-
rics Fr’echet Inception Distance (FID) and CLIP directional Similarity (CLIP
DirSim) proposed by Gal et al . [12]. We utilize the FID score to quantitatively
represent the image quality of generated editing outputs, and CLIP DirSim to
evaluate how well the models follow editing instructions to produce the output.

6.2 State-of-the-Art Comparisons

Qualitative Evaluation. In Fig. 5, we present our qualitative results in the
testing set (in domain). The comparison shows that our method surpass previous
baseline methods. Our method understands and follows both visual and language
editing instructions better, and produces a far more detailed manipulated output
especially in human figures. In Fig. 6, we present our qualitative results tested in
out-of-domain settings. We include five editing instructions that are considered
extremely hard for diffusion-based image editing model [18], including object
add, object remove, structure location change, structure action change, and ob-
ject size change. It is important to note that due to how we generate our training
dataset utilizing Prompt-to-Prompt [15], editing images pairs with these types of
editing instructions is not feasible to generate our training data. This generaliza-
tion comparison shows that our method excels baseline methods by a significant
margin. Our method shows a great capability to carry out well-detailed qual-
ity outputs following these hard editing instructions in diffusion-based image
editing models, while other baseline methods all fail to understand the editing
instructions well or perform manipulations close to the editing instructions.
Quantitative Evaluation. In quantitative evaluation, we score 7.57 in FID,
better than SDEdit (E), InstructPix2Pix and PromptDiffusion which scores
21.67, 17.87 and 13.75. We achieve 0.27 in CLIP DirSim, better than baselines
with 0.11/0.17/0.21 of CLIP DirSim scores. These quantitative findings show
that our method generates higher-quality images with better detailed qualities
and also exactly follows both language and visual editing instructions.
Ablation study. We conduct an ablation study on each of the four components
of our proposed method. Namely, the Reformed Conditioned Latent Diffusion
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Editing Instructions SDEdit (E)Query Image InstructPix2Pix PromptDiffusion Ours

Add Some Snow

Bend His Arm

Move It to the Right

Keep Only One

Make It Smaller

Fig. 6: Qualitative Comparison on Out-of-Domain Images. We conducted ex-
periments on images and instruct that are not in training dataset.

Model (RCLDM), Editing Shift Matching (ESM), Language Instruction Unifi-
cation (LIU) and Selective Area Matching (SAM). We present the qualitative
results in Fig. 7. From the qualitative results, we can see that without RCLDM
and ESM, the model understands the visual editing instructions much weaker,
especially in out-of-domain editing. Without LIU, for two language editing in-
structions with the same meaning, the model produces two output edited images
in different detail and quality. This difference in quality tends to increase in out-
of-domain settings. Without SAM, the details of the human face are distorted
making the model more vulnerable to producing outputs with worse detailed
qualities. We also include the qualitative ablation results on the testing dataset
in Tab. 2. From observation, our method performs the best when incorporat-
ing all four components. Without SAM or LIU, the FID score increases, mean-
ing those modules enhance the detail quality of the output generated. Without
CLDM or ESM, the CLIP DirSim score decreases, showing that those two mod-
ules contribute to a better understanding in both language and visual level.
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Editing Instructions w.o RCLDMQuery Image w/o ESM w/o LIU w/o SAM

Make It in Winter Time

Turn It to Winter Time

Make Emotion Cuter

Cuter Emotion

Ours

Fig. 7: Ablation Study Results for both in-domain (first two rows), and out-of-
domain first two rows) image manipulations

Table 2: Abalation Study results of comparison between our method with all com-
ponents and without the Reformed Conditioned Latent Diffusion Model (RCLDM),
Editing Shift Matching (ESM), Language Instruction Unification (LIU) and Selective
Area Matching (SAM). The ablation study is conducted on the entire test dataset.

w/o RCLDM w/o ESM w/o LIU w/o SAM Ours
FID ↓ 10.15 9.23 10.37 11.31 7.57
CLIP DirSim ↑ 0.13 0.15 0.23 0.19 0.27

7 Conclusion

In this work, we propose InstructGIE, an image editing framework with en-
hanced generalization ability, improving performance in both visual and text
aspects. We incorporate a VMamba-based module to enhance visual outputs
and introduce an editing-shift matching strategy to augment in-context learning.
Our selective area-matching technique addresses and rectifies corrupted details,
while a language unification technique aligns language embeddings with edit-
ing semantics. Additionally, we compile a publicly available dataset for better
generalization evaluation. Extensive experiments demonstrate our framework’s
superior in-context generation performance and robust generalization capability
across unseen vision tasks, both quantative and qualitively.
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