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Abstract. In this paper, we address the challenge of compressing gener-
ative adversarial networks (GANs) for deployment in resource-constrained
environments by proposing two novel methods: Distribution Matching for
Efficient compression (DiME) and Network Interactive Compression via
Knowledge Exchange and Learning (NICKEL). DiME employs foundation
models as embedding kernels for efficient distribution matching, leverag-
ing maximum mean discrepancy to facilitate effective knowledge distilla-
tion. NICKEL employs an interactive compression method that enhances
the communication between the student generator and discriminator,
achieving a balanced and stable compression process. Our comprehen-
sive evaluation on the StyleGAN2 architecture with the FFHQ dataset
shows the effectiveness of our approach, with NICKEL & DiME achieving
FID scores of 10.45 and 15.93 at compression rates of 95.73% and 98.92%,
respectively. Remarkably, our methods sustain generative quality even at
an extreme compression rate of 99.69%, surpassing the previous state-of-
the-art performance by a large margin. These findings not only show our
methodologies’ capacity to significantly lower GANs’ computational de-
mands but also pave the way for deploying high-quality GAN models in
settings with limited resources. Our code is available at Nickel & Dime.
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1 Introduction

Generative Adversarial Networks (GANs) have attracted significant popularity
as one of the most promising generative models, alongside the diffusion models
[6,/15/49,/55], in various computer vision tasks such as super-resolution [32}44}
58|, image editing [12 46} /53|, and image generation [20}24,25]. Particularly,
thanks to their fast inference speed compared to diffusion models, GANs offer
significant advantages for real-time applications [18}26,/48|. However, despite
their outstanding performance, the application of state-of-the-art GANs [8,,20122]
24}|25/[511/52] on edge devices is constrained by their huge resource consumption.

Although compression methods have been extensively studied for classifica-
tion tasks [11,/13,[31}/45,/56], their naive application to generative models often


https://orcid.org/0000-0002-5305-3443
https://orcid.org/0000-0001-8150-3715
https://orcid.org/0000-0001-5252-9668
https://lait-cvlab.github.io/Nickel_and_Diming_Your_GAN/

2 S. Yeo et al.

Teacher Teacher Teacher B
label
||| = (0.1,0.6, -, 0.1) III - III - [
p(G"(2)

KD loss l KD loss A I KD loss

Student Student z~N'(0,1) | Student
Image 1o label LR i b )
Jili = ©.1,06,-,0.1) = - e\,
o o TPEE@)
HR
(a) KD for classifier (b) KD for conditional GAN  (c¢) KD for unconditional GAN

Fig. 1: Comparison of knowledge distillation methods. (a) In classification tasks, the
instance matching of output labels between the teacher and student is performed.
Output labels are in low-dimensional space. Ideally, the outputs of the student and
teacher are the same. (b) In conditional generative tasks, the instance matching of
output images between the teacher and student is performed. Output images are in
high dimensional space. The outputs of the student and teacher are similar (in terms
of structure or background). (c¢) In unconditional generative tasks, the distribution
matching of output images between the teacher and student is performed. There is no
necessity for each input to have the same output.

leads to significant performance degradation . As shown in Fig. (1}, to dis-
till the rich knowledge from the teacher to the student, simple label matching is
performed in classification models, whereas high-dimensional output matching
is required in generative models. Moreover, in GANs, achieving optimal per-
formance requires a delicate balance between the generator and discriminator
during adversarial training, which becomes more difficult between the pruned
generator and discriminator (see Fig. .

Recently, several GAN compression methods
have been proposed, but compressing unconditional GAN remains challenging.
This is because conditional GANs require instance matching as the teacher
and student strive for similar outputs in a manner akin to classification tasks,
whereas unconditional GAN compression demands distribution matching
(Fig. . There exist a few unconditional GAN compression studies ,
but they either still suffer from significant performance degradation
or require additional costs such as manual labeling and MCMC sampling .

To address these problems, we first propose the Distribution Matching for Ef-
ficient compression (DiME). Most GAN compression methods utilized the embed-

ding space (e.g., perceptual , frequency ) because directly matching
high-dimensional output images leads to significant performance degradation.
Similarly, we leverage the foundation models (i.e., DINO [2,[43], CLIP [47]) as
embedding kernels, which have shown successful applications with strong embed-
ding power on various tasks . Furthermore, Santos et al. and Yeo et
al. have shown that neural networks can be considered as characteristic
kernels to map into Reproducing Kernel Hilbert Space (RKHS), where matching
the extracted features of two distributions is equivalent to matching the original
distributions as the maximum mean discrepancy (MMD) critic [9}[10}34}[37./50].
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Overview (a) Distribution Matching for Efficient compression (DiME)
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Fig. 2: A schematic overview of our method. Our method consists of (a) Distribution
Matching for Efficient compression (DiME), (b) Network Interactive Compression via
Knowledge Exchange and Learning (NICKEL), and (c) adversarial loss. (a) matches the
outputs between the teacher generator (G”) and the student generator (G°) via the
foundation model ¢ in the embedding space. (b) matches the intermediate features
between the teacher generator and the student discriminator (D). (c) represents the
adversarial loss between the student generator and both the teacher discriminator (D7)
and the student discriminator.

Additionally, we propose to utilize the global features of the teacher genera-
tor to reduce the sampling error. While we ideally hope for the matching of
population distributions between the teacher generator (G7) and the student
generator (G°) through knowledge distillation, in reality, there is a sampling
error due to the matching between sample distributions. Since the distribution
of the G7 is fixed, according to the law of large numbers, we can obtain nearly
error-free statistics by precomputing a large number of samples from G7. We
provide detailed discussion in Sec.

In addition to DiME, to exploit the characteristic of GAN that consists of a
generator and a discriminator, we propose Network Interactive Compression via
Knowledge Exchange and Learning (NICKEL). In GAN training, Lee et al.
has shown that the discriminator can provide more meaningful signals as feed-
back by learning the semantic knowledge of the generator. Inspired by Lee et
al., we not only distill knowledge directly between the generators (i.e., DiME),
but also distill knowledge from the more informative GT to the student discrimi-
nator (D) by transmitting knowledge between generators via the discriminator
indirectly. By utilizing G7, we obtain two distinct advantages, Firstly, from the
onset of training, D® learns the rich semantic knowledge embedded within the
GT. Secondly, the GT provides a wealth of knowledge surpassing that of G°. Fur-
thermore, we observe that NICKEL enhances the stability of GAN compression
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Fig. 3: Comparison of stability of ours and state-of-the-art compression methods. (a)
indicates the logits of the discriminator for the pruned generator on ITGC . The
green solid line represents the ideal equilibrium state. When the compression rate is
98.92% (blue dash line), it shows a more severe imbalance state compared to when the
compression rate is 90.73% (red dash line). (b) indicates the logits of the discriminator
for the pruned generator on NICKEL & DiME. Our method mitigates the imbalance be-
tween the discriminator and the pruned generator. (c) indicates the FID convergence
plot when the compression rate is 98.92%. NICKEL & DiME converges the most stably.

(see Fig.|3). To the best of our knowledge, NICKEL is the first method that distills
the knowledge from GT to G via the feedback of D for model compression.

Our experimental results show that DiME outperforms existing state-of-the-
art compression methods through knowledge distillation between G and G*.
By applying DiME to StyleGAN2, which has a baseline FID of 4.02, resulted
in FID scores of 11.25 and 18.32 at compression rates of 95.87% and 98.92%,
respectively. This compares favorably to the state-of-the-art method , which
achieves FID scores of 14.01 and 22.23 at the same compression rate. This demon-
strates the power of using foundation models as embedding kernels for knowl-
edge distillation. In addition, by using NICKEL with DiME, we further enhance
the FID scores to 10.45 and 15.93 with improved stability, setting a new stan-
dard in GAN compression performance. It is worth to note that we achieve a
reasonable performance with the FID of 29.38 at the extreme compression rate
of 99.69%, surpassing the previous state-of-the-art performance by a significant
margin. Our contributions can be summarized as follows:

— We propose DiME, an effective distillation method for GANs that ensures the
matching output distributions between GT and G via employing founda-
tion models as kernels for MMD loss (Sec. . DiME outperforms existing
GAN compression methods, achieving state-of-the-art performance in GAN
compression at all compression rates.

— We propose NICKEL that further enhances the distillation capability by pro-
viding more meaningful feedback from D?. We observe that NICKEL leads to
the improvement of stability (Sec. [3.2]).

— With NICKEL & DiME, our final model further raises the bar of the state-
of-the-art. Our method shows a stable convergence with competitive perfor-
mance, even at the extremely high compression rates of 99.69% (Sec. [4)).

— Last but not least, we standardize and benchmark GAN compression meth-
ods using official codes, ensuring future compatibility and reproducibility.
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2 Related Work

2.1 GAN Compression

Most GAN compression methods have been explored in conditional GAN set-
tings [17,35,/36,/62], which are unsuitable for distribution matching in uncon-
ditional GAN compression (see Fig. . Occasionally, to address this problem,
GAN compression methods have been explored [21,[39L[59], proposing better
embedding spaces or distance metrics between GT and G”. Wang et al. |57
proposed the GAN slimming (GS), a unified optimization framework, and em-
phasized that naive application of compression methods leads to significant per-
formance degradation due to the notorious instability of GANs. Liu et al. [39]
proposed the content-aware GAN compression (CAGC) method, which focuses
on only the contents of interest (e.g., object, face) to distill the knowledge, but
this method requires additional costs due to manual labeling of contents. Li et
al. [36] proposed the generator-discriminator cooperative compression (GCC)
to maintain the nash-equilibrium between G*° and D¥, but nash-equilibrium
still cannot be maintained, in complex settings. Kang et al. |21] proposed the
information-theoretic GAN compression (ITGC) by maximizing the mutual in-
formation between G7 and G°. ITGC requires a lot of computational costs due
to the energy-based model and MCMC sampling. Xu et al. |59] proposed the
StyleKD that focuses on the mapping network to achieve consistent outputs be-
tween GT and G°. However, StyleKD can only be applied to networks based
on StyleGAN. To address these issues, we propose Distribution Matching for
Efficient compression (DiME), which matches the distribution between GT and
G*® via foundation kernels.

2.2 Discriminator Regularization

Generally, GAN compression methods are focused on the G*°, thus it is applied
in the form of generator regularization for knowledge distillation. On the other
hand, GCC [36] emphasized the importance of considering not only the generator
but also the discriminator to maintain the Nash equilibrium state between the
compressed generator and discriminator. Similar phenomena were observed by
several studies [3]/17}/62]. To address this issue, GCC used the selective activation
discriminator, which partially activates the channels of the discriminator by uti-
lizing the capacity constraint to maintain the Nash equilibrium state. However,
GCC still shows significant performance degradation due to instability. In GAN
training, Lee et al. |[33] proposed generator-guided discriminator regularization
(GGDR). GGDR showed that the discriminator can learn the semantic knowl-
edge from the generator and lead to performance improvement of the generator
by providing more powerful adversarial loss as feedback. However, GGDR can-
not inject meaningful knowledge of the generator into the discriminator in the
early stage because the initial generator is close to being a randomly initialized
generator. Inspired by GGDR, we propose the Network Interactive Compression
via Knowledge Exchange and Learning (NICKEL), which distills the knowledge
from G” to DS and encourages powerful feedback from D® to G*°.
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3 Method

3.1 Knowledge Distillation with Foundation Kernels MMD

Generally, knowledge distillation (KD) minimizes the distance diq (e.g., wavelet
loss |62]) between the outputs of GT and G, encouraging G* to mimic GT. We
can achieve more effective knowledge distillation by designing a better distance
metric. In this paper, we propose Distribution Matching for Efficient compres-
sion (DiME), which matches the distributions between GT and G in the space
embedded by foundation kernels ¢ as distance dg4:

Lxp = dra(GT(2), G*(2)) = E[[|9(G" (2)), ¢(G* (2))][1] (1)

This is equivalent to using the MMD critic [9,/10,34L[37,/50], a statistical method
that matches two distributions in RKHS, assuming that the foundation kernels
¢ are characteristic kernels [50}/60].

While Eq. generally shows good performance, we observe the tremendous
performance degradation of all baselines (i.e., GS, CAGC, ITGC, Eq. ) when
G has extremely few parameters (see Fig. . As shown in Fig. the Nash
equilibrium breaks down when G*° has fewer parameters, which consequently
leads to the performance degradation of adversarial loss. To improve the stability
of KD loss in the early stage, we utilize the global features of G The global
features are computed by inferring over a multitude of images rather than batch
images, enabling the calculation of popular distribution statistics. Utilizing the
global features mitigates the sampling error induced by the batch size in KD,
with detailed discussion included in Sec.

3.2 Network Interactive Compression via Knowledge Exchange and
Learning

GAN utilizes a discriminator, which is a learnable network as the loss during the
training of the generator. The performance of the generator is heavily influenced
by the quality of feedback provided by the discriminator. GGDR [33] showed
that during GAN training, the discriminator can learn semantic knowledge from
the generator. Subsequently, the discriminator provides better feedback to the
generator, thus improving the performance of the generator. Inspired by GGDR,
we propose NICKEL, which distills knowledge from G” into D to provide more
powerful feedback to G*°. NICKEL has advantages over simply applying GGDR
to G° for two reasons. First, GGDR may struggle to provide meaningful infor-
mation when G° resembles a random network during early training, whereas
NICKEL can distill rich information from G7 from the outset. Second, in GAN
compression, due to the smaller network structure of G¥, GGDR cannot provide
knowledge as rich as GT. Therefore, we propose fine-tuning D via NICKEL to
learn information from G”'. However, fine-tuning D® using the NICKEL loss alone
is insufficient to fully leverage the information from the pre-trained discrimina-
tor. Therefore, for adversarial learning, both D™ and D® are employed. The loss
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function of NICKEL can be formulated as follows:

L
Lyrcker = ZdNICKEL(GiT(Z), fz(DZS(GT(Z))))a (2)
i=1
where D7 (G7(z)) and GT(z) represent the feature maps of the i-th layer of
D? and G7, respectively. f; is a linear transform to match the shape of feature
maps. As Lee et al. [33] mentioned, the knowledge of the generator contains a
lot of semantic information. Therefore, we utilize the wavelet loss [62] for dyrcker,
which is good for matching semantic information.

3.3 Training Objective

In summary, our training loss for GAN compression is formulated as:
L = Lagv + Adino - Ldino + Aetip * Letip + Anzcker © Lyrcker, (3)

where Agino and Mgy are the weights for the knowledge distillation, which utilizes
the dino embedding and clip embedding, respectively. Ayrcker is the weight for
NICKEL loss Lyrcker in Eq. . Lagv is the adversarial loss, which is the min-
max objective function that includes both D7 and D5. Laino and Le1ip are the
knowledge distillation losses of DiME in Eq. .

4 Experiments

4.1 Setups

Implementation details. We set 20, 15, and 10 for Agino, Actip, and Ayrcker,
respectively. We use the same pruned generator as CAGC, and for CLIP and
DINO, we use the pretrained WeightsE For NICKEL, we match feature maps in
1/4 resolution channels of the generator’s output (e.g., 64x64 feature maps for
256 resolution) on LH, HL, and HH components of Haar wavelet. To obtain the
global features, we conduct 20,000 model inferences with the batchsize of 256.

Datasets and Evaluation Metrics. We use CelebA [40], FFHQ [24], AFHQ
[4], LSUN-Church and LSUN-CAT |[61] datasets, and CIFAR-10 |28]. We use
Fréchet Inception Distance (FID) |14] and Precision & Recall [27,30,42] to eval-
uate the performance of the GANs, measuring both the quality and diversity of
the generated images. We note the average of the five best FID scores. Here, we
use the fvcore library to measure FLOPs, ensuring consistency with reported
FLOPs and enabling fair comparisons with existing Worksﬂ

L|CLIP.pt and DINO.pt

2 Tf you noticed any discrepancy in FLOPs, the discrepancy stems from (a) the typo in
the original CAGC paper, where FLOPs were reported as 4.1M instead of 4.1B—a
mistake recognized in subsequent papers; and (b) different libraries used. The re-
ported FLOPs of 4.1B at 90.87% compression can be reproduced via fvcore library.
In contrast, when used torchprofile library with the official NVIDIA StyleGAN2
code, it gives the FLOPs of 5.33B at 90.73%.


https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt
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Table 1: Comparison of FID scores of our methods (DiME and NICKEL & DiME) and
state-of-the-art compression methods on StyleGAN2 for various datasets. The dag-
ger symbol indicates the performance of the official model provided on the original
paper’s GitHub repository. The right side of the arrow shows the results obtained us-
ing NVIDIA’s official FID measurement code. Our reproduced models achieve higher
performance compared to the official models.

Model Dataset Method #params. FLOPs Comgte:smn FID|
(1) Full model [23] 24.77M 14.90B - 4.02
(2) Full modelf  30.03M 45.12B - 4.5

(3) CAGCH |39 7.9 — 10.82
(4) DCP-GANF [5|  *O™™  412B 908T% - gan g0

CAGC 5.24

ITGC |21 5.27

DAMNE 872M 3.73B  74.96% 5 00

FFHQ NICKEL & DiME 4.42

(256 256) GS [57] 10.26

CAGC 10.06

GCC |[36] 11.19

= 4.96M 1.38B  90.73% 10.02

StyleGAN2 DiME 8.39

NICKEL & DiME 7.43

CAGC 23.05

ITGC 22.23

DAMNE 2.60M 0.16B  98.92% 18.92

NICKEL & DiME 15.93

Full model 30.37TM  74.27B - 2.74

FFHQ Full modelt 49.1IM  74.3B - 2.7
(1024x1024) (5) CAGCt 7.6 — 7.53
(6) DCP-GANt ~ 92M TOB - 8939% Sy 5 g7

NICKEL & DiME 5.65M  6.99B  90.59% 6.41

Full model 30.03M 45.12B - 3.97

LSUN CAGC 4.50

Church StyleKD 4.47
(256x256)  (7) DCP-GANt ~ >OTM 412B 0 9008Th o g

NICKEL & DiME 3.94

LSUN Full modelt 113.7M 497.4B - 10.6

DDPM Church -
(256x256) SPDM (t=100)f [7] 63.2M 277.6B  44.19% 13.9

Baselines. We follow the architecture and training setups of StyleGAN2 [23],
except for augmentation (not used). Our pruned generators are identical to
CAGC [39]. The architecture and training setups for BigGAN and SNGAN follow
Kang et al. [19]. We use the official code of StyleGAN2-ADA-PyTorch and Stu-
dioGAN. We also compare Structural Pruning for Diffusion Models (SPDM) [7].
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Table 2: Comparison of FID scores of our methods (DiME and NICKEL & DiME) and
state-of-the-art compression methods on various architectures for various datasets.

Model Dataset Method #params. FLOPs Compression rate FID]

Full model [41] 4.28M  3.36B - 17.71
CAGC [39] 40.45
ITGC [21] 43.66
SNGAN CIFAR-10 DiME 1.20M 0858 74.88% 31.98
(32x32) NICKEL & DiME 23.11
CAGC 51.93
ITGC 59.99
DAMNE 0.50M 0.31B 90.85% 36,89
NICKEL & DiME 28.27
CIFAR Full model [1] 8.83M 3.83B - 10.66
. -10 ‘
BigGAN (39 30) CAGC 26.32
ITGC 0.80M 0.37B 90.45% 27.78
NICKEL & DiME 26.66
Full model [23] 24.53M 11.27B - 2.70
(Sgle]iés) CAGC 10.05
X ITGC 10.09
StyleKD 3.08M 0.27B 97.60% 10.41
NICKEL & DiME 7.56
StyleGAN2  AFHQ Full model  30.28M 59.67B - 3.01
(512x512) NICKEL & DiME 10.30M 14.94B 74.96% 3.17
Full model 24.77TM  14.90B - 8.19
LSUN Gs 17.11
CAT CAGC 12.31
(256 % 256) ITGC 4.96M 1.38B 90.73% 12.06
DiME 11.59
NICKEL & DiME 10.80

4.2 Benchmarking and Reproducibility in GAN Compression

The performance metrics for previous GAN compression techniques were often
based on outdated and unofficial code. To address this and for future compati-
bility and reproducibility in the field, we reimplement the state-of-the-art GAN
compression methods using NVIDIA’s official StyleGAN2-ADA code. The offi-
cial code shows comparable performance to the unofficial code, but with more
efficient FLOPs and fewer parameters (see (1) and (2) in Tab. [I)). Addition-
ally, we provide results re-evaluated using NVIDIA’s official FID code, utilizing
trained weights from the original GitHub repository of the baselines (indicated
by the right of the arrow of (3)-(7) in Tab.[1)). While the re-evaluated FID scores
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Fig. 4: Performance comparison as a function of compression rates on StyleGAN2
for FFHQ. (a) indicates a function showing how FID varies with compression rates.
NICKEL & DiME consistently outperforms other state-of-the-art compression methods
at various compression rates. At a compression rate of 74.96%, NICKEL & DiME shows
only 9.68% performance degradation compared to the full model, and the performance
degradation due to increasing compression rates occurs less than other state-of-the-
art compression methods. (b) indicates a function showing how Precision varies with
compression rates. NICKEL & DiME shows comparable fidelity scores to other methods.
(c) indicates a function showing how Recall varies with compression rates. NICKEL &
DiME shows better preservation of diversity compared to other methods, even with
higher compression rates.

for 1024x1024 FFHQ and LSUN-Church datasets are similar to the reported
FID, we find that the FID for the 256x256 FFHQ dataset shows a significant
performance gap (see (3) and (4) in Tab.[I). This discrepancy arises because the
reported FID scores were not calculated by computing the feature embedding
directly but by using the feature embedding provided by CAGC’s custom FID
code. We hypothesize that the feature embedding provided by CAGC may be
biased for the 256x256 FFHQ dataset.

4.3 Results

We first compare the knowledge distillation performance of DiME, as described in
Eq. 7 with state-of-the-art GAN compression methods |21})36,(39/57]. To distill
the knowledge of GT', DiME compares the outputs of GT and G* in the foundation
embedding spaces (i.e., DINO, CLIP). As shown in Tab. [[]and Tab. 2} DiME out-
performs the previous compression methods on various GAN architectures and
datasets. Particularly, DiME improves FID scores by 1.63 compared to the state-
of-the-art GAN compression methods in a setting where it reduces the FLOPS
of StyleGAN2 for FFHQ by 11 times, with a compression rate of 90.73%. Our
experimental results show that DiME is highly effective for knowledge distillation.

Additionally, to investigate the effectiveness of distillation considering the
characteristics of GANs (i.e., NICKEL) beyond direct knowledge distillation (i.e.,
DiME), we combine NICKEL, as described in Eq. , and DiME. Tab. [l|and Tab.
show that NICKEL & DiME further improves the performance over that of DiME.
In Tab.[I} our method achieves the FID score of 15.93 by compressing StyleGAN2
93-fold. This compares to ITGC, which attains the FID score of 14.01 with a 24-
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Table 3: Quantitative results of extremely compressed StyleGAN2. We compare the
performance of various compression methods on StyleGAN2 for FFHQ at compression
rate = 99.69%. Previous methods often suffer from severe performance degradation
due to the imbalance between G and D® when GAN is extremely compressed. On the
other hand, NICKEL & DiME shows acceptable performance compared to other methods
with high stability.

Model Dataset Method #params. FLOPs Compression rate FID]

Full model [23] 24.77M 14.90B - 4.02
FFHQ GS [57] 184.33
StyleGAN2 )
(256x256) CAGC [39] 186.61
e o 239M 0058 99.69% 164.99
NICKEL & DiME 29.38

fold compression. Furthermore, as shown in Tab. [T} our method not only obtains
better computational efficiency but also shows superior performance compared
to the state-of-the-art diffusion-model pruning method for the LSUN-Church
dataset. These results indicate the continued significance of GAN compression
research. As shown in Tab.[I]and Tab. [2] our method can be applied to various
GAN architectures and show similar trends for various datasets.

For in-depth investigations, we compare the FID, Precision, and Recall per-
formance of compression methods at various compression rates. Fig. [d indicates
the FID, Precision, and Recall scores at each compression rate for StyleGAN2
on FFHQ dataset. In Fig. [{a] NICKEL & DiME outperforms previous methods at
all reported compression rates. Furthermore, at a compression rate of 74.96%,
NICKEL & DiME shows only a 9.68% performance degradation (FID: 4.42), com-
pared to the full model (FID:4.03). Remarkably, our method shows significant
gaps with previous methods as compression rates increase, thanks to the im-
proved stability. Fig. [{b] shows precision scores, which indicate the fidelity of
generated images. We observe that the precision scores of the compressed mod-
els are higher than those of the full model. While we observe a deterioration
of precision scores with increasing compression rates, NICKEL & DiME maintains
the precision scores comparable to the full model, even at high compression
rates. Moreover, NICKEL & DiME shows precision scores comparable to the pre-
cision score of the full model up to a compression rate of 98.92%. Fig. 4c| shows
recall scores, indicating the diversity of the generated images. We observe that,
unlike precision scores, the recall scores of the compressed models decrease signif-
icantly with increasing compression rates. Still, NICKEL & DiME maintains better
diversity compared to the other compression methods. We provide performance
comparison with recent various metrics in the supplementary for more compre-
hensive analysis.

As shown in Fig. |3l NICKEL & DiME mitigates the imbalance between G*°
and D? by considering D® during knowledge distillation. Fig. and Fig.
respectively show the logits of D® for ITGC and NICKEL & DiME. In contrast to
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2 p LN
(a) compression rate = 90.73% (b) compression rate = 90.73%

Fig. 5: Visualization of images generated by compressed StyleGAN2 on FFHQ and
LSUN-CAT. (a) shows the visual quality of StyleGAN2 compressed by NICKEL & DiME
on FFHQ at compression rate = 90.73%. (b) shows the visual quality of StyleGAN2
compressed by NICKEL & DiME on LSUN-CAT at compression rate = 90.73%.

the ideal training of GAN where the logits of the discriminator should be close
to 0, ITGC shows significant performance degradation due to the imbalance be-
tween G° and D during training. Particularly, as the compression on generator
intensifies, the imbalance between G° and D® becomes more pronounced. On
the other hand, NICKEL & DiME alleviates this imbalance. Even at a compres-
sion rate of 98.92%, our method maintains a better equilibrium compared to
ITGC’s at the compression rate of 90.73%. Fig. shows the convergence of
FID scores, indicating stable convergence of our method compared to the other
alternatives. It is noteworthy that our method shows stable convergence even
under extreme compression rates. As shown in Tab. [3] at an extreme compres-
sion rate of 99.69%, other methods fail to achieve stable learning due to the
breakdown of Nash equilibrium between the highly compressed generator and
discriminator. In contrast, our method not only shows stable convergence but
also achieves reasonable performance, even with a 321-fold compression. Sec. [1.4]
shows the visual quality of this scenario.

4.4 Visualization of a Compression Factor of 11, 92, and 321.

In Fig. 5] we show generated images for FFHQ and LSUN-CAT datasets using
StyleGAN2 at a compression rate of 90.73%. Our method shows not only high
visual quality but also the ability to generate diverse images. In Fig. [6] we
visualize generated images at high compression rates. At a compression rate
of 98.92%, our method shows visual quality that is not significantly degraded.
Moreover, even at a compression rate of 99.69%, our method shows reasonable
visual quality with diverse images.
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(a) compression rate = 98.92% (b) compression rate = 99.69%

Fig. 6: Visualization of extremely compressed StyleGAN2 on FFHQ. (a) indicates the
visual quality of StyleGAN2 compressed by NICKEL & DiME at compression rate =
98.92%. (b) indicates the visual quality of StyleGAN2 compressed by NICKEL & DiME
at compression rate = 99.69%. NICKEL & DiME shows acceptable visual quality even at
extreme compression rates.

4.5 Ablation Study

CLIP and DINO Embeddings. In Tab. EI, the CLIP embedding w/o global
indicates using only CLIP as the embedding kernel for knowledge distillation.
We observe significant challenges in achieving stable knowledge distillation when
using only CLIP. In contrast, when using only DINO as the embedding kernel,
DINO embedding w/o global, we observe stable convergence and achieve the
FID of 20.75. In addition, we observe that although the CLIP embedding space
may pose challenges in achieving stable knowledge distillation, combining it with
the DINO embedding space could lead to slight performance improvements.

Utilization of Global Features. The objective of KD is to match the popula-
tion distributions between G and G*. However, due to the batch size, we can
only match the sample distributions. Hence, a sampling error €xp may occur in
the KD loss, which is bounded by the sum of the sampling errors of G and G*:

€D < €teacher T €student (4)

Fortunately, unlike G*°, the distribution of G” is fixed. Therefore, by precomput-
ing the statistics— referred to as global features —through infinite sampling, we
can achieve an infinitesimal sampling error €;cqcher- As shown in Tab. [d] we find
that utilizing global features leads to performance enhancement. In fact, this
resembles the MMD critic, which is a stable metric for learning the distribution.
Santos et al. and Yeo et al. noted that pretrained neural networks can
be considered as characteristic kernels, and reducing the discrepancy of the mean
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Table 4: Ablation study results in NICKEL & DiME.

Name %Global features NICKEL FIDJ|

CLIP embedding w/o global v 152.15
DINO embedding w/o global v/ 20.75
DINO embedding v v 19.60

DiME v v v 18.32

NICKEL & DiME v v v v 15.93

between extracted features can be seen as the MMD critic. In this vein, DiME
can be considered to stably match distributions between two generators.

5 Limitations

Our method shows excellent performance via distribution matching, yet it tends
to focus on the fidelity of generated images. In fact, every method experiences sig-
nificant degradation in recall performance, even at low compression rates (Fig. .
Furthermore, there still remains the imbalance between the generator and dis-
criminator at extreme compression rates, which incurs significant performance
degradation. Thus, it is an interesting research direction to develop methods that
are capable of maintaining diversity and stability when compressing generative
models at extreme compression rates.

6 Conclusion

In this paper, we propose Distribution Matching for Efficient compression (DiME)
and Network Interactive Compression via Knowledge Exchange and Learning
(NICKEL) that set a new standard of the performance in GAN compression. DiME
matches the distributions between the teacher generator and student generator
by using the maximum mean discrepancy (MMD) as a loss function. For better
matching, we harness the power of the pretrained foundation model and use it as
embedding kernels in MMD loss for knowledge distillation. DiME can compress
StyleGAN2 with the FID of 4.02 by 20 times while maintaining reasonable per-
formance with the FID of 11.25, achieving the state-of-the-art performance in all
compression rates. NICKEL further enhances the performance by providing better
feedback to the student generator from the discriminator. Combining these two,
NICKEL & DiME successfully compresses StyleGAN2 by 92 times while maintain-
ing the FID score of 15.93. Thanks to its enhanced stability, NICKEL & DiME
allows us to compress StyleGAN2 by up to 99.69% (321 times smaller) while
maintaining reasonable performance, which is not possible for existing methods.
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