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Abstract. Spatio-temporal scene graphs represent interactions in a video by de-
composing scenes into individual objects and their pair-wise temporal relation-
ships. Long-term anticipation of the fine-grained pair-wise relationships between
objects is a challenging problem. To this end, we introduce the task of Scene
Graph Anticipation (SGA). We adapt state-of-the-art scene graph generation meth-
ods as baselines to anticipate future pair-wise relationships between objects and
propose a novel approach SceneSayer. In SceneSayer, we leverage object-centric
representations of relationships to reason about the observed video frames and
model the evolution of relationships between objects. We take a continuous time
perspective and model the latent dynamics of the evolution of object interactions
using concepts of NeuralODE and NeuralSDE, respectively. We infer represen-
tations of future relationships by solving an Ordinary Differential Equation and a
Stochastic Differential Equation, respectively. Extensive experimentation on the
Action Genome dataset validates the efficacy of the proposed methods.
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1 Introduction

We focus on spatio-temporal scene graphs [15]], which is a widely used framework
for representing the evolving spatial and temporal relationships among objects. These
graphs contain information about the objects present in a video, including their cate-
gories, positions, sizes, and spatial dependencies. Simultaneously, they illustrate how
these relationships evolve over time, revealing objects’ movement, interactions, and
configuration changes across consecutive frames in a video sequence. They facilitate
our understanding of dynamic scenes and serve as a valuable tool for addressing down-
stream tasks in applications such as action recognition and video analysis, where the
temporal dynamics of object interactions play a crucial role.

We introduce a novel task known as Scene Graph Anticipation (SGA), which, given
a video stream, aims to forecast future interactions between objects, as shown in Figure
[I] The Scene Graph Anticipation (SGA) task holds significance across diverse domains
due to its potential applications and relevance to several downstream tasks. For instance,
it contributes to enhanced video understanding by predicting spatiotemporal relation-
ships within video scenes, facilitating improved video analysis and interpreting complex
object interactions over time. SGA plays a crucial role in activity recognition, enabling
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Fig. 1: Task Description. We contrast the task of Video Scene Graph Generation (VidSGG) on
the left with the proposed task of Scene Graph Anticipation (SGA) on the right. VidSGG entails
the identification of relationships from the observed data, such as (Person, looking_at, Floor)
and (Person, not_contacting, Cup). SGA aims to anticipate the evolution of these relationships
to (Person, touching, Cup), and eventually, (Person, drinking_from, Cup)ﬂ
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systems to predict future object interactions for more accurate classification and ad-
vanced surveillance. Anticipation aids in anomaly detection by identifying deviations
from expected object relationships, thereby enhancing the detection of abnormal events
in video sequences. Intelligent surveillance systems can also benefit from SGA, allow-
ing systems to predict and respond to security threats by understanding evolving object
relationships in monitored environments. Finally, SGA is essential for predicting ob-
ject movements and interactions for applications in robotics and autonomous systems,
contributing to safer and more efficient navigation and decision-making processes.

To tackle the challenges of SGA, we introduce two novel approaches that extend
a state-of-the-art scene graph generation method [7]. These approaches utilize object-
centric representations of relationships, allowing us to analyze observed video frames
and effectively model the dynamic evolution of interactions between objects. This de-
tailed understanding of temporal dynamics is the basis for our proposed methods.

In a departure from traditional sequential modelling, our two approaches adopt
a continuous-time perspective. Drawing inspiration from Neural Ordinary Differen-
tial Equations (NeuralODE) [3]] and Neural Stochastic Differential Equations (Neu-
ralSDE) [17]], respectively, we develop methods that capture the latent dynamics gov-
erning the evolution of object interactions. By formulating the anticipation problem as
solving Ordinary Differential Equations (ODE) and Stochastic Differential Equations
(SDE) and thus using a continuous representation of the anticipated relationships, we
hope to significantly expand the fidelity of our predictions. We rigorously validated
our proposed methods and strong generation-based baselines on the Action Genome
dataset [[15]], a benchmark for spatio-temporal scene understanding. Our experimental
results demonstrate the superior performance of our approaches in accurately anticipat-
ing fine-grained pair-wise relationships between objects.

3 The relationships presented are taken from the ground truth annotations of the Action Genome
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2 Related Work

Spatial Graphs. Learning to represent visual content in static data such as 2D/3D im-
ages as a spatial graph where the objects act as nodes and edges to describe the visual
relation between the objects is called Image Scene Graph Generation (ImgSGG). There
has been extensive research in 2D ImgSGG direction following the seminal work of Vi-
sual Genome [20]. Following this [[19] extended the task to static 3D (RGB & depth)
scene data. Recently, there has been a surge in methods that explored the role of foun-
dation models in ImgSGG task-variants such as open-vocabulary ImgSGG [5]], weakly
supervised ImgSGG 18], panoptic ImgSGG [44]] and zero-shot ImgSGG [23,143].
Spatio-Temporal Graphs. Dynamic visual content, such as videos, provides a
more natural set of contextual features describing dynamic interaction between ob-
jects. Encoding such content into a structured spatiotemporal graphical representation
for frames where nodes describe objects and edges describe the temporal relations is
called Video Scene Graph Generation (VidSGG). Early approaches on VidSGG ex-
tended previously proposed ImSGG-based methods to the temporal domain. We refer
to [45] for a comprehensive survey on earlier work. Recent work explored learning
better representations using architectures like Transformers [7/35]] and unbiased repre-
sentations [16,29]] owing to the long-tailed datasets Action Genome [|15[], VidVRD [34].
Applications of Structured Representations. Structured representation of visual
content has been used in various downstream tasks, including task planning [1]], image
manipulation [8], visual question answering [|6], video synthesis using action graphs [2]
and using scene graph as a knowledge base [21]. To the best of our knowledge, we are
the first to formally introduce the SGA task and propose baseline methodologieﬂ
Video Prediction. Early video prediction methods treat dynamics modelling as a
sequential prediction problem in pixel space using image-level features [22]. Later ap-
proaches proposed include using external knowledge as priors [[101/27,39], better archi-
tectural design to model contextual information [32,/42]], and focusing on object-centric
representations [41]]. Recently, there has been a surge in methods proposed that use
diffusion models to estimate the distribution of a short future video clip [|14}38]]. Con-
trary to the conventional dense pixel-based generation often seen in video prediction
techniques, SGA emphasizes the importance of learning relationship representations
that facilitate the prediction of the evolution of observed interactions between objects.
Our experiments demonstrate that the proposed method can effectively estimate these
relationship representations for periods extending beyond 30 seconds into the future.
Neural Differential Equations. Several previous works leveraged the frameworks
of NeuralODE [J3] and NeuralSDE [17] to explore the learning of latent dynamics mod-
els for various tasks of interest such as trajectory prediction [25]], traffic forecasting [26]],
video generation [30], and simulation of multi-agent dynamical systems [[12}/13,31]].

4 SGA is related to [40], wherein they use relation forecasting as an intermediate step for action
prediction. However, we aim for precise anticipation of future relationships between inter-
acting objects. SGA is also closely related to [28], which constructed a dataset from Action
Genome by sampling frames and truncating the videos. However, we differentiate our method
by utilizing the complete dataset to train our models without any pre-processing. Further-
more, we acknowledge that the approach in [28]] resembles the proposed baseline (Variant-1).
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3 Background

Ordinary Differential Equations (ODEs) The initial value problem (IVP) is given by:

dz(t)
dt

Here, f : R? x R — R? represents a time-varying smooth vector field, and z(t) is the
solution to the IVP. Chen et al. [3|] introduced the framework of NeuralODEs wherein
they relaxed the time-variance of the vector field f and parameterized it through neu-
ral networks, thus enabling efficient learning of dynamical systems from data. This
approach has paved the way for modelling the dynamics of latent states through La-
tentODEs. Analytical solutions for complex ODEs are typically infeasible; hence, we
resort to numerical methods that discretize the time domain into finite intervals, approx-
imating the solution at each step. Thus, they trade off precision with computation time.
On the faster, less accurate side, we have single-step methods, such as Euler, while on
the slower, more accurate side, we have multistep methods, such as Adams-Bashforth.
Stochastic Differential Equations (SDEs) An initial value problem is formulated as:

=f(z(t),t), z(to) = 20 ()

dz(t) = p(z(t), t)dt + o(z(t), ) dW(t), z(to) = 20 2)

Here, u(z(t),t) : RY x R — R% o(z(t),t) : R x R — R@X™) represent drift
and diffusion terms, respectively and W (¢) denotes an m-dimensional Wiener process.
NeuralSDEs employ neural networks to parameterize both drift and diffusion terms thus
enabling the learning of stochastic processes from data [17,24]]. Solving SDEs analyti-
cally is often challenging and infeasible. Numerical solutions depend on the choice of
interpretation of the SDE, which is often connected to the conceptual model underlying
the equation. There are many interpretations of an SDE, of which Stratonovich is one
of the most popular [46]. Stratonovich’s interpretation of an SDE is commonly used to
model physical systems subjected to noise. SDE solvers use discretization methods to
approximate the continuous dynamics of the system over small time intervals. The most
common numerical methods for solving SDEs include Euler-Maruyama, Milstein, and
Runge-Kutta schemes, each varying in accuracy and computational complexity.

4 Notation & Problem Description

Notation. Given an input video segment Vi, we represent it using a set of frames
Vi = {I*}L, defined on discretized time steps ¢ = {1,2,--- , T}, where the total
number of observed frames 1T’ varies across video segments. A scene graph is a sym-
bolic representation of the objects present in the frame and their pair-wise relationships.

In each frame I*, we represent the set of objects observed in it using Of = {oi}fj:(?,
where N (t) denotes the total number of objects observed in I*. Let C be the set com-
prising all object categories, then each instance of an object o}, is defined by its bound-
ing box information b, and object category cf, where bl € [0,1]* and ¢} € C. Let
‘P be the set comprising all predicate classes that spatio-temporally describe pair-wise
relationships between two objects; then each pair of objects (oﬁ7 0§~) may exhibit mul-
tiple relationships, defined through predicates {pﬁjk}k where pﬁjk € P. We define a
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relationship instance 7}, as a triplet (05, Dijks ot) that combines two distinct objects

(of,0%) and a predicate Pijx- Thus, the scene graph G' is the set of all relationship
triplets G* = {r};; }4jx- Additionally, for each observed object o} and a pair of objects

t At t

(of,0%). we use ¢! € [0, 1]|C| and p}; € [0, 1]‘7)‘ to represent the distributions over

object categories and predicate classes respectively. Here >, ¢, =1, %", ﬁﬁj r = L

Problem Description. We formally define and contrast the tasks of Video Scene Graph
Generation (VidSGG) and Scene Graph Anticipation (SGA) as follows:

1. The goal of VidSGG is to build scene graphs {G'}]_, for the observed video seg-

ment VT = {I*}T_, Tt entails the detection of objects {OZ}ZkV:(g) in each frame and
the prediction of all pair-wise relationships {rfj & rijk between detected objects.

2. The goal of SGA is to build scene graphs {G'}/ ' | for future frames V7" =
{1t} 2 | of the video based on the observed segment of the video Vi', here H
represents the anticipation horizon. Thus, it entails anticipating objects and their
pair-wise relationships in future scenes. We note that anticipating the emergence of
new objects in future frames is a significantly harder problem. So, we presuppose
the continuity of observed objects in future frames (i,e {of}fv:(lt ) = {o;fr}ili(lT )Vt >

T and predict the evolution of relationships {{rfj k}f:ﬁ_l} in future scenes.
ijk

Graph Building Strategies. To build scene graphs for future frames, we employ two
strategies that are widely established within the VidSGG literature:

— With Constraint Strategy: This approach enforces a unique interaction constraint
between any pair of objects in a scene. Specifically, for a pair of objects (oﬁ, oz-),
there exists a single relationship predicate p! ; that describes the interaction between
the objects, and we incorporate relationship triplets {rfj }4; into the scene graph G*.

— No Constraint Strategy: In contrast, this approach embraces a more complex and
detailed graph structure by permitting multiple edges (where each edge describes a
relationship predicate) between any pair of interacting objects (oﬁ, 03-) . Specifically,

we incorporate all predicted relationship triplets {rgj % }ijk into the scene graph G*.

5 Technical Approach

We propose SceneSayer for Scene Graph Anticipation. As illustrated in Fig 2} Scene-
Sayer incorporates an object representation processing unit (ORPU) that captures repre-
sentations of the objects detected in a frame, a spatial context processing unit (SCPUf]
that builds spatial context-aware relationship representations and a latent dynamics pro-
cessing unit (LDPU), which is designed to understand spatio-temporal dynamics and
predict the evolution of relationships between interacting objects. Distinctively, Sce-
neSayer employs a continuous-time framework to model the latent dynamics of the
evolution of relationships. In the following sections, we provide a detailed description
of these units and the methodologies employed for training and testing SceneSayer.

3> Both ORPU and SCPU can be adapted from any existing VidSGG models.
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Fig.2: Overview of SceneSayer. The forward pass of SceneSayer begins with ORPU, where
initial object proposals are generated for each frame. These proposals are then fed to a temporal
encoder to ensure that the object representations remain consistent over time. Next, in SCPU, we
construct initial relationship representations by concatenating the representations of interacting
objects. These representations are further refined using a spatial encoder, embedding the scene’s
spatial context into these relationship representations. Then, the representations undergo further
enhancement in LDPU, where another temporal encoder fine-tunes them, imbuing the data with
comprehensive spatio-temporal scene knowledge. These refined relationship representations from
the final observed frame are then input to a Latent Dynamics Model (LDM), where a generative
model, either a Neural ODE or a NeuralSDE, generates relationship representations of interacting
objects in future frames by solving the corresponding differential equations. Finally, these future
representations are decoded into relationship predicates to construct anticipated scene graphs.

5.1 Object Representation Processing Unit

To achieve temporally consistent object representations across observed frames, our ap-
proach first extracts visual features using a pre-trained object detector and then further
enhances these extracted features by passing them through an encoder. Specifically,

We utilize a pre-trained Faster R-CNN [33]] for extracting visual features ({vf}fi(lt)),

bounding boxes ({bﬁ}f\i(lt)), and object category distributions ({éﬁ}il\i(lt)), for object
proposals {og}ﬁ(f ) in the observed frames. We then compute the matrix V; by stacking
visual features {v{}7_ ;. We employ a transformer encoder [37] to aggregate temporal
information across extracted visual features from all frames. The input for our encoder
consists of sequences V;, which serve simultaneously as queries Q, keys K and values

V. Formally, the transformation process at the n-th encoder layer is given by

Vz(n) = ObjectEncoder <Q =K=V= Vgn_l)) @



SceneSayer for Scene Graph Anticipation 7

5.2 Spatial Context Processing Unit

To learn spatial context-aware relationship representations. We first construct relation-
ship representations between interacting objects in a scene and further process them by
passing through an encoder. Specifically, following [7]], we construct relationship rep-
resentation z} ; by concatenating visual and semantic features of the objects as follows:
z;; = Concat(W1v}, Wyv}, W3Uj;, S}, S%) 4)
Here, W1, W5, W3 represent the learnable weights of linear layers. Ugj repre-
sent processed feature maps of the union box computed by RolAlign [33]. S! and SE‘
correspond to the semantic embedding vectors of the object categories. Subsequently,
we employ a transformer encoder to integrate spatial contextual information. Here, for
each observed frame I, we construct Z* by stacking all relationship features {zﬁj}ij
corresponding to objects observed in a frame. We then feed it as input for a transformer
encoder which operates on queries QQ, keys K, and values V that are derived from the
same source, the preceding layer’s output or the initial relationship features. Formally,
the transformation process at the n-th encoder layer is given by:

[Z!]™ = SpatialEncoder (Q =K=V= [Zt}(n—l)) )

5.3 Latent Dynamics Processing Unit

To understand spatio-temporal dynamics of the evolution of relationships between in-
teracting objects, departing from traditional approaches that architectural variants of
transformers [[11,/36], we take a continuous time approach and learn a governing differ-
ential equation in latent space of relationship representations. Our LDPU contains two
components: (1) Temporal Context Encoder and (2) Latent Dynamics Model.
Temporal Context Encoder. To learn spatio-temporal context-aware relationship rep-
resentations, we further process the output of SCPU by passing it through a transformer
encoder that fine-tunes the representation. Specifically, we compute the matrix Z;; by
stacking the relationship representations {zﬁj}thl. We feed Z;; through an encoder that
aggregates temporal information across all observed relationship representations refer
Eq. @ Here, the input Z;;, serves simultaneously as queries Q, keys K, and values V.

Z{") — TemporalEncoder (Q —K=V= zg?)) 6)

Latent Dynamics Models. We begin by abstracting the complexities introduced by
external factors that add uncertainty to the evolution of relationships between interact-
ing objects and construct a model based on the premise that the core dynamics driving
the changes in these relationships are governed by a non-linear deterministic process.
Specifically, we leverage the expressive nature of NeuralODEs [3] in learning time-
invariant vector fields from data that approximate the underlying non-linear determin-
istic process and propose SceneSayerODE. We cast the problem of anticipating rela-
tionship representations of interacting objects as an instance of the ODE-IVP, where the
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initial condition is given by the relationship representation of the last observed interac-

tion of the object pair (oﬁ, 0;)' The evolution of this relationship representation over

time is then mathematically described as:

T+H
z?‘H = ziTj + / £y (zﬁj) dt @)
JT

In video data that is captured from a single viewpoint, we lose information due to
issues such as blurry imagery and occlusions, leading to uncertain interpretations of
the scenes. Therefore, it is crucial to integrate uncertainty into the modelling frame-
works to represent these stochastic dynamics accurately. We assume the presence of a
non-linear stochastic differential equation that governs this evolution and propose Sce-
neSayerSDE which uses NeuralSDEs [17] to learn it from data. Specifically, we for-
mulate the problem of anticipating future interactions as an SDE-IVP. Here, the initial
conditions are set using the representations of the last observed representation object
pair, thus facilitating a data-driven learning process that accounts for the inherent un-
certainties. The evolution of relationship representation over time is then described as:

. T+H T+H
A= [ whas [ saawe ®)

5.4 Decoders

— Predicate Classification Head. We employ two predicate classification heads (two-
layer multi-layer perceptron) in our approach; we use one head for classifying rela-
tionship representations between objects of the observed scenes and the other head
for classifying anticipated relationship representations of the future scenes.

— Bounding Box Regression Head. We employed a regression head (two-layer multi-
layer perceptron) that takes the anticipated relationship representations as input and
outputs bounding box information corresponding to the interacting objectsﬂ

— Object Classification Head. We decode the output of the object encoder using a
two-layer multi-layer perception to generate object category distributions.

5.5 Loss Function.

Our training objective is constructed as a combination of loss functions implemented on
two types of representations (corresponding to objects and relationships): (a) those de-
rived from observed frames, and (b) those anticipated based on these observed frames.
(a) Observed Representations. We apply the following loss functions over represen-
tations derived from observed frames: (I) Object Classification Loss on the object rep-
resentations and (II) Predicate Classification Loss on the relationship representations.

T IC] T
_ t t __ t At . _ t t _
Ei - E Ci? Ci - E yim IOg(Cim)v £gen - E £genv Egen - Epﬁj
t=1 n=1 t=1 7
Object Classification Loss (I) Predicate Classification Loss (IT)

® We observed that decoding bounding boxes of only actors also produced compelling results.
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(I) Object Classification Loss (£;). We evaluate object classification performance
by applying cross-entropy loss to the outputs from the ORPU as detailed above where
y; represents the target for object i, and ¢! is the distribution over object categories.

(IT) Predicate Classification Loss (Lgen). focuses on classifying the relationship

representations between pairs of objects (ozf, 02) across all frames (¢ € [1,T]) as de-

tailed above. Here, ﬁpgj represents multi-label margin loss and is computed as follows:
L= 3 > max(0,1 - plyv] + pliful) ©)
ueP+ veP-

(b) Anticipated Representations. We apply the following loss functions over antici-
pated relationship representations for each observation window: (IIl) Predicate Classi-
fication Loss, (IV) Bounding Box Regression Loss, and (V) Reconstruction Loss

(IIT) Predicate Classification Loss (E;},;T)). focuses on classifying the anticipated
relationship representations between observed pairs of objects (05, 02-) in each window.
We utilize the frames observed in each window (¢ € [1, T')) to anticipate the relationship
representations in subsequent future frames (t € [T + 1, min(T + H,T)]) where T, T
and H denote the number of frames observed in the window, the total number of frames

in the video and the length of the anticipation horizon respectively.

min(T—i—H,’Z_")
1:T
Lol = D Lho L= Ly (10)
t=T+1 ij

(IV) Bounding Box Regression Loss (,Cl(,});gs) ). We input anticipated relationship

representations into a dedicated linemﬂlayer to estimate the bounding boxes for objects.
Inspired by the YOLO models, we compute the difference between the predicted and
the ground truth bounding boxes using the Smoothed L1 loss as follows:

min(T+H,T)
1:T t t 2 7t
’Ct(Joxes) = Z Efboxes? 'Cfboxes = Z LsmOOth(bI;c - bl}‘c) (11)
t=T+1 kEboxes

(V) Reconstruction Loss (£$e1c:£,)). We apply a Smoothed L1 loss to ensure that the
anticipated representations mirror the output from the temporal encoder in LDPU.

min(T+H,T) 1 (N(#)XN(t))
L) _ It o — Lonoom (28 — 2t
recon t_;_l recon? Tecon N(t) X N(t) ; S th(zl] le)

12)
Thus, the total objective for training the proposed method can be written as:

T T-1
L= (Mﬁéen A ﬁﬁ) 30 (Rl FALlE) FasEE)) a3)
t=1 i T=3

Loss Over Observed Representations Loss Over Anticipated Representations

" In AG, dedicated refers to the allocation of decoders: one for subject and one for objects.
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6 Experiments

Dataset. We apply the proposed method to anticipate future interactions on the Action
Genome [[15]. We pre-process the data and filter out videos with less than 3 annotated
frames. Thus, we obtained 11.4K videos in total; we adhered to the train and test split
provided by the dataset. The dataset encompasses 35 object classes and 25 relationship
classes. These 25 relationship classes are grouped into three categories, namely: (1) At-
tention Relations comprise relationship classes which primarily describe attention of
the subject towards the object, (2) Spatial Relations comprise relationship classes that
describe the spatial relationship between two objects, and (3) Contacting Relations
comprises relationship classes that indicate different ways the object is contacted.

Remark. This dataset primarily includes videos featuring a single actor engaging
with objectﬁ in various real-world environments. In the context of the action genome,
a subject-object pair can demonstrate multiple spatial and contacting relationships.

Evaluation Metric. We evaluate our models using the standard Recall@K and
meanRecall@K metrics, where K is set to values within the set {10, 20, 50}. Recall@K
metric assists in assessing the ability of our model to anticipate the relationships be-
tween observed objects in future frames. The long-tailed distribution of relationships in
the training set [29] can generate biased scene graphs. While the performance on more
common relationships can dominate the Recall@K metrics, the mean recall metric in-
troduced in [4] is a more balanced metric that scores the model’s generalisation to all
predicate classes. In the following sections, we will assess the performance of models
by modifying the initial fraction of the video, denoted as F provided as input. We set
F t0 0.3, 0.5, 0.7, and 0.9 to facilitate a comprehensive understanding of the model’s
proficiency in short-term and long-term relationship anticipation.

Settings. We define three settings to evaluate models for the SGA task, each varying
by the amount of scene information provided as input:

— Action Genome Scenes (AGS): In AGS, the model’s input is limited to raw frames
of the video. Thus, with minimal context and without any additional information
we intend to challenge the model’s ability to interpret and anticipate the scenes.

— Partially Grounded Action Genome Scenes (PGAGS): In this intermediate set-
ting, along with raw frames of the video we additionally input the model with pre-
cise bounding box information of active interacting objects observed in the scene.

— Grounded Action Genome Scenes (GAGS): In GAGS, we provide the most com-
prehensive level of scene information. Specifically, the model takes precise bound-
ing box information and the categories of the active objects observed in the inter-
action as input. In video data, observed frames are fraught with challenges such as
object occlusions and blurry imagery, which complicate object detection and inter-
pretation of interaction. Thus, in a setting where we provide complete information
regarding a scene as input and reduce the noise induced by these challenges, we
aim to evaluate the model’s ability to understand spatio-temporal dynamics.

8 Adopting an actor-centric approach aligns with the literature on VidSGG. While SceneSayer
can anticipate relationship representations between any two objects in a scene, we specifically
tailor it to address the dynamics between the interacting actor (subject) and the objects.
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Fig. 3: Overview of Baselines. In our proposed Variant 1 (shown to the left), we input relation-
ship representations to an anticipatory transformer to generate relationship representations for
future frames auto-regressively. A predicate classification network (MLP) is then employed to de-
code these anticipated relationship representations. Meanwhile, in Variant 2 (shown to the right),
we enhance relationship representations by passing them through a temporal encoder. These rep-
resentations are fed to an auto-regressive anticipatory transformer to anticipate future relation-
ship representations. Here, we employ two predicate classification heads (MLPs): one decodes
the observed relationship representations, and the other decodes the anticipated relationship rep-
resentations. In both variants proposed, the auto-regressive anticipatory transformer acts as the
generative model, predicting the evolution of relationships between the interacting objects.

6.1 Baselines

We select two methods from VidSGG literature, STTran [7] and DSGDetr [9]], as our
strong baselineﬂfor adaptations. In our adaptation of selected methods to anticipate the
relationships, we retain the object representation processing unit (ORPU) and spatial
context processing unit (SCPU) as proposed originally and introduce two variants of
latent dynamics processing unit (LDPUM (see Fig. . The two proposed variants differ
in (1) the architecture of the model and (2) the loss functions employed to train them.
In terms of architectural differences, in our baseline+ variants, we employ an an-
ticipatory transformer built using the vanilla transformer architecture [37] to generate
future relationship representations by processing the relationship representations in the
observed temporal context. Meanwhile, in our baseline++ variants, we introduce an ad-
ditional temporal encoder to process the representations before we feed them through

® Although VidSGG literature witnessed many approaches recently, most use the representation
processing pipeline proposed by the two selected transformer-based VidSGG methods.

!0 In SceneSayer, we developed a novel ORPU but adapted the SCPU from [9] and trained all
units end-to-end from scratch. We noticed a drop in performance when we used pre-trained
ORPU and SCPU (kept frozen during further training) units from [[7,9|] and trained the LDPU.
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Table 1: Results for SGA of AGS, when trained using anticipatory horizon of 3 future frames.

\ Recall (R) \ Mean Recall (mR)
SGA of AGS | With Constraint No Constraint | With Constraint No Constraint
F  Method 10 20 50 10 20 50| 10 20 5 10 20 50
STTran+ |7 125 196 207 139 216 408 | 34 53 57 35 73 203
o3 DSGDerrs 9 128 196 204 143 218 413 | 35 53 56 36 76 212
STTran++ (7 185 279 295 154 272 486 | 59 104 113 62 141 312
DSGDetr++ (9 195 283 294 168 290 489 60 103 110 84 167 323
SceneSayerODE (Ours) | 23.1 292 314 233 325 451 | 106 138 150 133 201 330
SceneSayerSDE (Ours) 250 317 343 259 350 474 | 114 153 169 156 231 371
STTran+ |7 131 211 222 149 226 429 | 36 58 62 37 76 214
o5 DSGDerrs 9 136 209 219 152 231 433 | 38 58 61 39 80 222
STTran++ (7 197 302 318 166 291 515 | 63 113 123 66 147 334
DSGDetr++ |9 207 303 316 174 305 S519| 64 110 117 84 170 339
SceneSayerODE (Ours) | 259 326 348 264 366 498 | 116 152 164 143 214 360
SceneSayerSDE (Ours)  27.3 348 370 284 386 514 | 124 166 180 163 251 399
STTran+ 7 149 234 247 166 251 472 41 65 70 42 85 240
07 DSGDews [0 155 234 243 168 253 474 | 43 65 69 43 88 247
STTran++ (7 221 336 352 190 328 568| 70 126 136 77 171 368
DSGDetr++ (9 229 336 349 198 341 567 | 71 126 133 95 192 372
SceneSayerODE (Ours) | 303 366 389 321 428 556 | 128 164 178 165 244 396
SceneSayerSDE (Ours) 314 380 40.5 333 440 564 | 138 177 193 181 273 444
STTran+ 7 152 241 254 175 268 496 | 45 70 75 46 92 243
0o DSGDes [0 162 248 259 179 277 Sl4 | 48 72 76 47 97 259
STTran++ [7 236 355 374 202 350 602 | 74 134 146 89 184 3838
DSGDetr++ (9 244 361 376 222 3701 610 | 74 138 148 114 210 395
SceneSayerODE (Ours) | 33.9 404 426 366 483 613 | 140 181 193 178 274 434
SceneSayerSDE (Ours) 348 419 441 373 486 616 | 151 194 210 208 309 468

the anticipatory transformer. This component further refines the representations by en-
hancing the model’s understanding of spatio-temporal dynamics. In the context of loss
functions, the approach followed by our baseline+ variants focuses solely on decod-
ing the anticipated relationship representations. However, in contrast, our baseline++
variants adopt a more comprehensive strategy. These not only decode the anticipated
representations but also simultaneously decode the observed representations. This dual-
decoding approach allows for a more nuanced understanding of relationships.

6.2 Results

Action Genome Scenes. We present the results in Table. [I| where we observe that both
STTran++ and DSGDetr++ consistently outperform their basic counterparts. Further-
more, it can be clearly noticed that the SceneSayerSDE model consistently outperforms
the SceneSayerODE model, which, in turn, performs better than the baseline variants.
Although SceneSayerODE/SDE models fall short on the R@50 metric in the No Con-
straint graph generation strategy we note that the R@K metric holds importance for
lower values of K and, in R@ 10 and R@20 metrics, they consistently outperform base-
lines. We note that SceneSayerSDE is up to ~ 70% better on the R@ 10 metric than the
best baseline variant. Additionally, the SceneSayerODE/SDE models exhibit reduced
prediction bias, as evidenced by their performance across the mean recall metrics.
Partially Grounded Action Genome Scenes. We present the results in Table. [2]
We observed that the STTran adaptation demonstrates superior performance compared
to the DSGDetr adaptation across both model variants. Notably, the SceneSayer mod-
els significantly outperform all proposed baseline models. In particular, the SceneSay-
erSDE model achieves up to ~ 30% improvement on the R@ 10 metric compared to the
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Table 2: Results for SGA of PGAGS, when trained using anticipatory horizon of 3 future frames.

\ Recall (R) \ Mean Recall (mR)
SGA of PGAGS | With Constraint No Constraint | With Constraint No Constraint
F  Method 10 20 50 10 20 50| 10 20 5 10 20 50
STTran+ |7 223 229 229 255 383 456 | 86 91 91 131 248 423
o3 DSGDerrs 9 136 141 141 222 339 460 | 48 50 50 79 169 409
7 STTran++ |7 2.0 228 228 281 390 452 | 92 98 98 177 306 420
DSGDetr++ (9 182 188 188 277 392 47.3| 89 94 94 153 266 440

SceneSayerODE (Ours) | 27.0 279 279 33.0 409 465 | 129 134 134 194 279 469
SceneSayerSDE (Ours) ~ 28.8 29.9 299 346 420 462 | 142 147 147 215 317 482

STTran+ |7 242 249 249 275 41.6 499 | 93 9.9 9.9 13.8 267 43.1
05 DSGDetr+ [9 158 162 162 247 382 524 | 55 57 57 8.7 185 415
STTran++ |7 245 252 252 306 432 502 | 101 107 107 184 295 43.1
DSGDetr++ [9 207 214 214 304 440 527|102 108 108 165 308 451

SceneSayerODE (Ours) | 30.5 31.5 315 368 459 518 | 149 154 155 216 308 48.0
SceneSayerSDE (Ours) 322 333 333 384 469 518 | 158 166 166 235 350 49.6

STTran+ |7 289 294 294 336 499 587|107 113 113 163 322 499
0.7 DSGDetr+ [9 188 19.1 19.1 299 447 602 | 6.5 6.8 6.8 104 224 477
STTran++ |7 291 297 297 368 516 587 | 115 121 121 212 346 49.0
DSGDetr++ [9: 246 252 252 367 518 606|120 126 126 197 364 506

SceneSayerODE (Ours) | 36.5 373 373 446 544 603 | 169 173 173 252 362 53.1
SceneSayerSDE (Ours)  37.6 385 385 456 54.6 593 | 184 191 191 283 409 549

STTran+ |7 309 313 313 399 566 638 | 115 119 119 203 377 543
09 DSGDetr+ |9 213 216 216 384 549 687 | 75 77 77 137 290 554
STTran++ [7 311 316 316 435 576 639 | 124 128 128 253 39.6 540
DSGDetr++ 9 276 281 28.1 458 615 685 | 132 137 137 258 429 583

SceneSayerODE (Ours) | 41.6 422 422 527 618 665 | 190 194 194 294 422 592
SceneSayerSDE (Ours) 425 431 431 538 624 662 | 20.6 211 211 329 460 59.8

best-performing baseline model and both SceneSayerODE/SDE models outperform all
proposed baseline models in mean recall metrics.

Grounded Action Genome Scenes. We present the results in Table. [3]and we ob-
serve that in our proposed baseline models, the adaptations of STTran perform better
than the adaptations of DSGDetr and SceneSayer variants outperformed all baselines.

Table 3: Results for SGA of GAGS, when trained using anticipatory horizon of 3 future frames.

| Recall (R) I Mean Recall (mR)
SGA of GAGS | With Constraint No Constraint | With Constraint No Constraint
F  Method 10 20 50 10 20 50 10 20 50 10 20 50
STTran+ |7 308 328 328 306 473 628 | 7.1 78 78 95 196 457
o5 DSGDers (o 270 289 289 305 451 628 | 67 74 T4 95 194 452
: STTran++ |7 307 331 331 359 517 641 11.8 133 133 165 293 502
DSGDetr++ [9 257 282 282 361 507 640 | 11.1 128 128 197 320 S5I.1

SceneSayerODE (Ours) | 349 373 373 405 541 639 | 151 166 166 196 31.6 558
SceneSayerSDE (Ours) ~ 39.7 422 423 469 591 652 | 184 205 205 246 378 59.0

STTran+ |7 350 37.1 37.1 344 534 708 | 8.0 8.7 8.8 105 215 488
05 DSGDetr+ 9 312 333 333 343 510 708 | 78 86 86 105 214 484
STTran++ |7 356 381 381 403 584 722|134 152 152 178 325 537
DSGDetr++ [9 293 319 320 403 569 720 | 122 138 139 20.6 343 540

SceneSayerODE (Ours) | 40.7 434 434 470 622 724 | 174 192 193 228 352 602
SceneSayerSDE (Ours) 450 477 477 525 664 735 | 207 230 231 266 408 638

STTran+ |7 40.0 418 418 410 625 804 | 9.1 9.8 9.8 126 263 575
07 DSGDetr+ |9 355 373 373 410 598 807 | 89 96 96 126 262 574
STTran++ |7 413 436 436 482 688 820|163 182 182 223 395 63.1
DSGDetr++ [9 339 363 363 48.0 667 819 | 142 159 159 245 411 634

SceneSayerODE (Ours) | 49.1 516 51.6 58.0 740 828 | 21.0 229 229 273 432 705
SceneSayerSDE (Ours) 520 545 545 618 767 834 | 241 265 265 319 480 742

STTran+ |7 447 459 459 509 748 909 | 103 108 108 163 337 714
09 DSGDetr+ |9 388 400 400 510 717 912|102 107 107 163 337 716
STTran++ |7 46.0 477 477 602 815 923 | 196 214 214 296 49.1 764
DSGDetr++ [9 381 398 398 588 788 922|163 177 177 307 503 772

SceneSayerODE (Ours) | 58.1 59.8 59.8 72.6 867 932|250 264 264 350 51.7 802
SceneSayerSDE (Ours)  60.3 619 619 748 880 935 | 285 298 298 400 577 872
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ANTICIPATED RELATIONS

24

crounp TRUTH | 1R DSGDetr+ STTran++ oDE oE

OBSERVED FRAMES

Fig. 4: Qualitative Results To the left, we show a sampled subset of the frames observed by the
models. The second column provides a ground truth scene graph corresponding to a future frame.
In the subsequent columns, we contrast the performance of baseline variants with the proposed
SceneSayer models. In each graph above, correct anticipations of relationships are denoted with
text in black and incorrect anticipation of the relationships are highlighted with text in red.

Specifically, the proposed SceneSayerSDE model demonstrated remarkable efficiency,
marking approximately a 26% improvement in the R@ 10 metric compared to the best-
performing baseline. Furthermore, both SceneSayerSDE/ODE variants demonstrated
superior performance consistently over the baseline variants on the mean recall metrics.

Qualitative Results. In Fig. 4] we provide qualitative SGA results on AG dataset
under different settings. These results are the output of baseline variants and SceneSayer
on 70% observation. The comparative analysis demonstrates SceneSayer’s superior per-
formance. Specifically, under the AGS setting, SceneSayerODE outshines all with the
fewest incorrect anticipations, closely followed by SceneSayerSDE. In the PGAGS and
GAGS, SceneSayerSDE surpasses the performance of all other models.

7 Discussion, Limitations & Future Work

Discussion: We introduced a novel task, Scene Graph Anticipation (SGA) and proposed
approaches that model the latent dynamics of the evolution of relationship representa-
tions between interacting objects. Limitations: Our evaluation focused on assessing
the model’s ability to anticipate symbolic scene graphs in future frames and excluded
the prediction performance of object localization in future frames. Future Work: Our
work opens up several avenues for future work. First, an exciting direction is to include
localization in the framework. Second, SGA as a tool can be used to develop methods
for Surveillance Systems, Robotics, etc. Third, leveraging commonsense knowledge
derived from Large Language Models or Vision Language Models to enhance the an-
ticipation of symbolic scene graphs in future frames offers another promising direction.
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