
Concept Arithmetics for Circumventing Concept
Inhibition in Diffusion Models

Vitali Petsiuk1 and Kate Saenko1

Boston University, Boston, USA
{vpetsiuk,saenko}@bu.edu

Abstract. Motivated by ethical and legal concerns, the scientific com-
munity is actively developing methods to limit the misuse of Text-to-
Image diffusion models for reproducing copyrighted, violent, explicit,
or personal information in the generated images. Simultaneously, re-
searchers put these newly developed safety measures to the test by as-
suming the role of an adversary to find vulnerabilities and backdoors
in them. We use the compositional property of diffusion models, which
allows us to leverage multiple prompts in a single image generation. This
property allows us to combine other concepts that should not have been
affected by the inhibition to reconstruct the vector responsible for target
concept generation, even though the direct computation of this vector
is no longer accessible. We provide theoretical and empirical evidence of
why the proposed attacks are possible and discuss the implications of
these findings for safe model deployment. We argue that it is essential
to consider all possible approaches to image generation with diffusion
models that can be employed by an adversary. Our work opens up the
discussion about the implications of concept arithmetics and composi-
tional inference for safety mechanisms in diffusion models.
Content Advisory: This paper contains discussions and model-generated
content that may be considered offensive. Reader discretion is advised.
Project page: https://cs-people.bu.edu/vpetsiuk/arc
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1 Introduction

Recent advances in Text-to-Image (T2I) generation [25, 27, 29] have led to the
rapid growth of applications enabled by the models, including many commer-
cial projects as well as creative applications by the general public. On the other
hand, they can also be used for generating deep fakes, hateful or inappropri-
ate images [2, 9], copyrighted materials, or artistic styles [31]. Trained on vast
amounts of data scraped from the web, these models also learn to reproduce the
biases and stereotypes present in the data [2, 8, 18, 20]. While some legal [9, 19]
and ethical [28] questions concerning image generation models remain unsolved,
the scientific community is developing methods to limit their malicious utility,
while keeping them open and accessible to the community.

https://cs-people.bu.edu/vpetsiuk/arc
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Fig. 1: While recent methods for erasing concepts in Diffusion Models successfully
pass their respective evaluations (middle row), they do not entirely remove the target
concept (such as zebra) from model weights as claimed. In this work, we propose a
method to reproduce the erased concept using the inhibited models (bottom row).

Some recently proposed approaches that we refer to as Concept Inhibition
methods [7, 8, 10, 16, 30, 40] modify the Diffusion Model (DM) to “forget” some
specified information. Given a target concept, the weights of the model are fine-
tuned or otherwise edited so that the model is no longer capable of generating
images that contain that concept. Unlike the post-hoc filtering methods (safety
checkers) that can be easily circumvented by an adversary [1,26,39], these meth-
ods are designed to prevent the generation of undesired content in the first place.
One of the motivating factors of this line of works is to limit the inappropriate
content generation by the models, while keeping them open-source and acces-
sible to the community. Based on the evaluation results of these works, which
demonstrate a significantly reduced reproduction rate of the target concept in
the generated images, the authors conclude that the model is no longer capable
of generating the target concept and that such “erasure cannot be easily cir-
cumvented, even by users who have access to the parameters” [7]. However, we
demonstrate, theoretically and experimentally, that the models inhibited by ex-
isting methods still contain the information for reproducing the erased concept
(Figure 1). This information can be easily exploited by an adversary with access
to compositional inference of the model, which is a weaker requirement than full
access to the model weights.

Recent works explored how a semantic concept can be constructed by speci-
fying and composing more than one prompt in one generation [3,17,30]. We con-
sider the implications of this compositional property in the context of concept
inhibition. By using concept arithmetics, which is not available in single prompt
inference, we use multiple input points to reconstruct the erased concept. Un-
like prompt optimization attacks [4, 35] that leverage insufficiently generalized
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inhibition near the target concept (similar to adversarial attacks), our attacks
leverage the compositional property and use the input points further away from
the target. These points are sufficiently inhibited according to the design of the
inhibition methods but still contain information about the erased concept. Since
the defense against these attacks has to take compositionality into considera-
tion, our attacks cannot be mitigated by the methods that exclusively address
the adversarial robustness.

Intuitive and straightfoward to implement, our proposed ARC (ARithmetics
in Concept space) attacks would be readily available to an adversary, which
makes them a serious threat against the presumably safe models. The attacks
require black-box access to compositional inference of the model. This is the case
for multi-prompting APIs, which are becoming increasingly popular1, or for an
adversary with full access to the model weights and code, e.g ., if the model is
open-source.

We present both theoretical grounding and empirical evidence of the attacks’
effectiveness, and we quantitatively show that the attacks significantly increase
the reproduction rates of the erased concepts. Compositional inference attacks
are applicable to all safety mechanisms that modify the model locally (near a
given input point). This simple alteration in the inference process may break
the assumptions made by the defense mechanisms developers, or exploit the
vulnerabilities considered to be minor to a larger extent.

To summarize, our main contributions are as follows: (1) We are the first
work to consider the compositional property of Diffusion Models in the context
of concept inhibition and its circumvention. (2) We design novel attacks that
exploit the limitations of concept inhibition methods, based on the theoretical
framework we develop. (3) We test our attacks against models inhibited with a
variety of inhibtion methods and show that the attacks significantly increase the
reproduction rates of the erased concepts.

Our work is not intended to discourage the use of the presented inhibition
methods but to determine the strengths and limitations of different approaches,
further define the notion of concept inhibition, and ultimately advance the re-
search on safe and responsible Text-to-Image generation. The proposed attacks
can be used to test the robustness of the inhibition methods and to guide the
choice of the inhibition method and its parameters. Our intentions do not in-
clude enabling the generation of inappropriate content; however, by the nature
of red-team work, the presented approach can be used for malicious purposes.

2 Related Work

2.1 Diffusion Models

Diffusion Model is a type of generative model that employs a gradual denoising
process to learn the distribution p(x) of the data [5,12,21,32,33]. The diffusion
1 https://docs.midjourney.com/docs/multi-prompts,

https://platform.stability.ai/docs/features/multi-prompting

https://docs.midjourney.com/docs/multi-prompts
https://platform.stability.ai/docs/features/multi-prompting
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model generates an image x0 in T steps by iteratively predicting and removing
noise starting from the initial Gaussian noise sample xT . Noise prediction is
learned to optimize the score function ∇x log p(x).

Classifier guidance [5, 32, 34] enables generation conditioned on some input
c by adding a conditional score term γ∇x log p(c | x) with guidance scale γ > 1
controlling the influence of the conditional signal. p(c | x) can be an external
image classifier model predicting the class label c. Classifier-free guidance [13]
proposes to train the model jointly on conditional and unconditional denoising
to obtain a single neural network that models both unconditional p(x) and con-
ditional p(c | x) distributions. In this case, the total guidance can be expressed
as

∇x log pγ(x | c) = ∇x log p(x) + γ(∇x log p(x | c)−∇x log p(x)).

or in terms of the learned U-Net model ϵθ that predicts the noise to be removed
from xt at timestep t and conditioned on prompt c1

2:

ϵ̂θ(xt, c1, t) = ϵθ(xt, t) + γ(ϵθ(xt, c1, t)− ϵθ(xt, t)). (1)

Latent Diffusion Models [27] incorporate encoder E and decoder D before
and after the diffusion process, respectively. Moving the gradual denoising from
image pixel space to lower dimensional encoder-decoder latent space improves
convergence and running speeds.

2.2 Concept Arithmetics in Diffusion Models

A series of recent works [3, 17, 30] has demonstrated that adding the guidance
terms for multiple prompts during the diffusion process results in an image that
corresponds to multiple prompts simultaneously. With the additional prompt
guidance incorporated in Equation 1, the updated noise prediction equation
becomes

ϵ̂θ(xt, c1:N , t) = ϵθ(xt, t) +

N∑
j=1

djγj(ϵθ(xt, cj , t)− ϵθ(xt, t)) (2)

where γj (typically the same for all concepts) is the guidance scale for each
additional prompt/concept cj , and dj ∈ {−1, 1} determines the direction of
guidance — negative or positive. For example, the generation conditioned on
the prompt “a picture of a car” changes to a sports car or a bulkier-looking car
by introducing the concept “fast” with positive d1 = 1 or negative d1 = −1
guidance respectively [3].

We refer to the generation with N > 1 as Compositional Inference (CI)
as opposed to Standard Inference (SI) that follows Eq. 1 (N = 1, d1 = 1).

2 Throughout, we imply that the string is embedded using CLIP [24] textual encoder
before being passed to ϵ.
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Negative guidance (dj = −1) minimizes the probability of the concept cj in
the generated image and can be viewed as a logical negation of the concept [17].
This is used as an inference-time inhibition technique in Safe Latent Diffusion
(SLD) [30] where a hand-crafted safety phrase that describes undesired content
(e.g ., “violence, nudity,. . . ”) is applied with negative guidance.

2.3 Concept inhibition in Diffusion Models

The actively developing line of research on unlearning concepts in the DM in-
cludes Erasing concepts from SD (ESD) [7], Ablating Concepts (AC) [16], Unified
Concept Editing (UCE) [8], Selective Amnesia (SA) [10].

Each of these methods defines an optimization task to modify the weights
of the generative model to prevent the generation of the target concept. Given
the target concept, a text string ct, the optimization objective is designed to
compromise the model’s outputs or intermediate computations in the area of
latent space defined by ct. This is accomplished in a supervised manner by pro-
viding the “ground-truth” outputs that the model should produce instead. The
ground-truth outputs are constructed by using the corresponding outputs for
some alternative anchor concept ca (AC, UCE, SA), or by negating the con-
ditional guidance of ct itself (ESD). ESD, AC, SA solve the optimization task
by fine-tuning the model weights using gradient descent, while UCE edits the
weights directly using a closed-form solution. ESD, UCE, AC optimize the out-
puts of the conditional guidance part of the model ϵθ(xt, p, t), while SA operates
on image level.

Additional optimization configurations include selection of the weight groups
to be updated; choice of concepts to preserve (by adding regularization terms to
the optimization objective); the number of fine-tuning iterations.

2.4 Security mechanisms in Diffusion Models

Security mechanisms in DM aim to address some high-risk aspects of the model’s
operation, such as privacy, legal, or ethical concerns. Watermarking to validate
the origin of the generated images [6,38] or the diffusion model itself [41]; shield-
ing personal images and artworks against diffusion-based editing [36] or style
mimicry [31]; and unlearning a given concept (Section 2.3) are some of the re-
cently developed security mechanisms. Assuming the role of an adversary to
search for exploits in a system with the goal of improving its safety is a critical
part of the development process in cybersecurity, referred to as red teaming.

Red team research recently performed in the context of diffusion models in-
cludes bypassing the SD safety checker [26,39], evading watermark detection [15],
or poisoning the data to attack the model trained on it [37].

Most relevant to our work are the recently proposed methods to circumvent
inhibition in diffusion models via prompt optimization [4,35]. These works pro-
pose an optimization task in the token space (e.g ., using a genetic algorithm [35])
to make a given prompt problematic (one that results in the reproduction of the
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inhibited concept). To generate problematic prompts, [4] requires white-box ac-
cess to the uninhibited diffusion model, [35] requires white-box access to the
encoder. These requirements significantly limit the practical applicability of the
methods. These works modify the form of the prompt without modifying its
content (e.g ., modifying prompt “scary image” to “q scary image” [4]). They
aim to exploit imperfect generalization of inhibition in the vicinity of the target
concept, i.e., low adversarial robustness.

We, on the other hand, focus on circumventing the inhibition by intentionally
modifying the content of the prompt to get inputs, where the effect of inhibition
is lower due to the presence of another concept. We use multiple inputs distanced
away from the target concept to reproduce the target concept in their composi-
tion. Our approach requires no optimization and no access to either inhibited or
uninhibited models’ weights. It operates using compositional inference, which is
sometimes provided as a black-box service.

3 Compositional Inference Attacks

The goal of our work is to find inputs that can be used in compositional inference
to reproduce the target concept using the inhibited model, where the direct
computation of the target guidance has been modified. We denote conditional
guidance for concept cj as g(xt, cj , t), and for the ease of notation, we omit xt, t
in the arguments (we set guidance scale for all concepts to be equal, γj = γ):

g(cj)
def
= γ(ϵθ(xt, cj , t)− ϵθ(xt, t)).

Compositional property of DM is equivalent to linearity of g in semantic space
(via CLIP embeddings), i.e., g(sports car) = g(car) + g(fast). The opti-
mization task in the inhibition works analyzed in this paper is constrained only
at the target concept ct (or the target and a few neighboring concepts). As a
consequence, this means that when inhibiting the concept ‘sports car’ it is as-
sumed that the guidances for other concepts, such as g(car) and g(fast) are
appropriately modified in an implicit way (through latent space). Our red team
attacks are designed to challenge this assumption.

First, we provide the principles and intuition explaining the design and ef-
fectiveness of the proposed attacks in Section 3.1. We design the general attack
framework in Section 3.2 and, finally, provide the attack implementations used
in our experiments in Section 3.3.

3.1 Rationale behind the attacks

Conditional guidance g∗ = g∗θ of the uninhibited model is a function, parameter-
ized by weights θ, that maps a CLIP embedding of a string describing some con-
cept c to a vector in the latent space of the diffusion model. It is observed that this
function is linear for some points in semantic space: g∗(c1±c2) = g∗(c1)±g∗(c2),
where ± denotes the plus or minus operation in the semantic space.
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To obtain the inhibited model g = gθ̃, prior works propose to optimize the
weights θ to match the output of the function at point ct to a given value y0 by
minimizing some loss function L:

θ̃ = min
θ

||L(gθ(ct), y0)||. (3)

We define the task of circumventing concept inhibition as computing g∗(ct) using
only the inhibited model g.

We express inhibited function g(c) as a linear combination of uninhibited
g∗(c) and y0:

g(c) = λ(c) · y0 + (1− λ(c)) · g∗(c),
where scalar λ(c) (which can be calculated by solving the equation for it) denotes
the degree of modification (inhibition) at point c. The degree of modification
at every point is determined by the choice of the loss function and optimization
parameters. The goal of the ideal inhibition is to achieve λ(ct) = 1, and λ(c) = 0
for all c “independent” of ct (otherwise, guidance for c is affected by y0).
Hypothesis H1. Degree of modification λ(c) at point c decreases as its distance
from ct increases and can be modeled as an exponential decay function: λ(c) =
exp(−|c− ct|/σ2), where σ is a parameter that determines the rate of decay.

This hypothesis is based on the fact that the optimization task in Eq. 3 is
designed to minimize the loss function only at concept ct. The modification is
localized (unlike, for example, rotation of the whole space) and centered at ct.
Therefore, the degree of modification is expected to decrease as the distance
from ct increases. We develop the rationale for the attacks using the hypothesis.
We show that as the distance between some arbitrary concept cd and inhibited
concept ct increases, the linear combination(s) of g can be used to compute a
vector colinear with g∗(ct). Proofs can be found in the supplementary.
Proposition P1. If |cd − ct| → +∞ and g∗(ct ± cd) = g∗(ct)± g∗(cd), then

g(ct ± cd)∓ g(cd) → g∗(ct),

where → denotes convergence in the limit.
For a sufficiently distant concept cd, the left-hand side, which uses only the in-
hibited model, approaches the guidance vector g∗(ct) of the original model.
Proposition P2. If |cid− ct| → +∞, g∗(ct± cid) = g∗(ct)± g∗(cid) N → ∞, then

N∑
i=1

[
g(ct ± cid)∓ g(cid)

]
→ N · g∗(ct).

Proposition P3. For any concept cd,

λ(ct + cd) < λ(ct) and λ(ct − cd) < λ(ct).

Moving away from ct by +cd or −cd results in a lesser degree of modification.
Proposition P4. If y0 = g∗(ca) and λ(ca) = 0, then

g(ct)− g(ca) = (1− λ(ct))(g
∗(ct)− g∗(ca)).

That is, if an anchor concept ca is used, and the guidance at ca is not affected,
then the guidance vectors g(ct)− g(ca) and g∗(ct)− g∗(ca) are colinear.
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Compositional Inference

+a cake in the shape of zebra –a cakeZebra standing in the field.

+text that reads car –text, writtenCar parked by the road.

Fig. 2: Even if the computation of conditional guidance for target concept g(ct) (‘ze-
bra’, ‘car’) is modified (inhibited with AC, ESD), we can use a detour concept cd
(‘cake’, ‘text’) to compute g(ct + cd) − g(cd). We provide theoretical and empirical
evidence that this guidance can be used to generate images with the target concept ct.

3.2 Attacked inference framework

Using the formalization of compositional property and inhibition objectives de-
scribed in Section 3.1, we design the inputs that aim to circumvent concept
inhibition. Table 1 lists the inputs for g that result in the guidance vectors co-
linear with g∗(ct) or a sum containing it. We refer to the attacks that bypass
concept inhibition via using arithmetics in concept space and compositional in-
ference as ARC attacks. Additionally, the attacks can be stacked to produce

Table 1: Attacks for circumventing concept inhibition, where ct is the erased target
concept, ca is an anchor (replacement) concept using during the inhibition, and cd is
some arbitrary concept that is chosen by the attacker.

Attack dj Concept cj Based on
A1 +1 ct + cd P1

−1 cd
A2 +1 ct − cd P1

+1 cd
A3 +1 ct + cd P3
A4 +1 ct − cd P3
A5 +1 ct P4

−1 ca

stronger guidance in the direction of ct. This is demonstrated for attacks A1 and
A2 in Proposition P2, similar logic applies to stacking different attacks.
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To preserve control over the image generation, we combine the attack inputs
with the original user-defined prompt. Thus, performing attack A1 to generate
an image given prompt c1 means that instead of using Standard Inference to
compute

ϵθ(xt, t) + g(c1),

we use Compositional Inference to compute

ϵθ(xt, t) + g(c1) + g(ct + cd)− g(cd).

For example, for a target concept ct=“zebra”, prompt c1=“zebra standing in
the field”, if we implement A1 with cd=“cake” and ct + cd=“cake in the shape of
zebra” the inference is

ϵθ(xt, t) + g(zebra standing in the field)

+ g(a cake in the shape of zebra)

− g(a cake).

Figure 2 illustrates this example.
Our approach does not involve any optimization procedures. The setup re-

quired to perform the attacks consists exclusively of having access to the com-
positional inference of the model. If such access is given as a black-box API, no
coding is required to perform the attacks. If the access is given as model weights,
one can use existing implementations of compositional inference to perform the
attacks (minimal coding might be required). The only computational overhead of
our attacks consists of additional computations of g (forward pass of the U-Net)
during inference for each additional concept used.

3.3 Attack implementations

We test the proposed attacks on two of the types of inhibition considered in the
literature: object categories and nudity. Table 2 lists the attacks considered in
our experiments.

O1, O2, N1. Proposition P1 implies that for concepts cd sufficiently distant
from ct such that linearity holds, the guidance g(ct+cd)−g(cd) approaches g∗(ct).
We manually define concepts cd (‘cake’), and its combination + with another
concept ct (ct+‘cake’=‘cake in the shape of ct’). We try to keep the combination
ct + cd as close to cd as possible to further minimize the degree of modification
since closer to cd means further away from ct. This is why we use ‘cake in the
shape of ct’ instead of ‘cake and ct’. This principle is used to design attacks O1
(cd = cake) and N1 (cd = text, written). Here, concept cd can be viewed as
a detour concept. Attack O2 extends O1 following the intuition provided by P2:
stacking multiple signals produces stronger guidance in the direction of ct. O2
uses three detour concepts instead of one.

N2, N3. In O1, we subtract the concept cd=‘cake’ in order to keep the
generation of images unbiased with rescpect to the concept cd. Otherwise, the
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Table 2: Attack implementations for circumventing object and nudity inhibition. Plug-
ging in the given ct (and ca if applicable), we obtain the guidance that we add to the
standard prompt guidance during the Compositional Inference.

Attack Implements Additional guidance
O1 A1 +g(a cake in the shape of ct)− g(a cake)
O2 A1×3 +g(a cake in the shape of ct)− g(a cake)

+g(text that reads ct)− g(text, written)
+g(a song about ct)− g(a song)

O3 A5 +g(ct)− g(ca)

N1 A1 +g(text that reads nudity)− g(text, written)
N2 A3 +g(nudity, s*x, nsfw, naked, nude, p**n)
N3 A4 +g(naked man with exposed p***s)

generated images would likely contain cd (Figure 2, middle column), and in
some cases, cd can overpower ct (image contains a cake but no target concept).
However, even though the inference that uses this guidance is biased towards
cd, it still contains the guidance in the direction of the target concept and has
a lesser degree of modification (implication of P3). The subtraction of g(cd) can
be omitted when biased generation can be considered a successful inhibition
circumvention. In the case of ct=‘fruits’, N2 is equivalent to computing the
guidance for a superset of concepts ct + cd=‘fruits and vegetables’, and N3 is
equivalent to computing the guidance for a subset of concepts ct− cd=‘apple’ in
P4. Note that cd is not explicitly defined in either of the attacks, we only define
ct ± cd. These attacks can also be viewed as the reversed SLD [30] approach
with a general unsafe concept prompt (N2) or a more focused unsafe concept
targeting a specific NudeNet category (N3).

O3. Attack O3 is based on P4 which implies that the guidance g(ct)− g(ca)
remains colinear with g∗(ct) − g∗(ca) even after the inhibition. Running com-
positional inference with this guidance should maximize probability of target
concept being present in the image and minimize the probability for the anchor
concept. This prevents this attack from reproducing target and anchor concepts
simultaneously (e.g ., zebra and horse in one image). This limitation is negligible
if the anchor is a concept similar to the target but becomes critical when the
anchor concept is a superset of the target concept (e.g ., “robot” is a superset of
“R2D2”). We recommend using a superset anchor concept for better resistance
to this attack. Also note, that if ca = ∅ (empty string) is used in the inhibition,
O3 reduces to +g(ct) since g(∅) = g∗(∅) = 0.

We conclude this section by noting that manual selection of prompts is a
common practice in the modern works in inhibition and semantic manipulation
of diffusion models. Similar to how SLD does not optimize the safety prompt or
inhibition works do not optimize the target or anchor concept prompts, in this
work, we omit the analysis of the optimal choice of cd. While different cd can yield
different results, our primary goal is to demonstrate that such cd exist and can
be used to reproduce the target concept. The fact that such detour concepts can



Concept Arithmetics for Circumventing Concept Inhibition 11

be easily picked by hand is an advantage of our approach, making the attacks
interpretable and extremely easy to implement by an adversary. Additionally,
we focus on universally applicable attacks, such that the same attack (e.g ., O1)
would work for multiple concepts (e.g ., zebra, golf ball, etc.). In practice, instead
of using a generic detour concept (cake, text), the attacker could come up with
a target-specific detour concepts that might work better for a given target.

4 Experiments

We quantitatively evaluate the proposed attack implementations on the models
that were inhibited for nudity in Section 4.1; object categories and recognizable
figures in Section 4.2. Qualitative results can be seen in Figures 1, 2, 5.

We adopt Stable Diffusion 1.4 as the base model for our experiments, as this
is the main model analyzed by the inhibition works and is the only model with
available implementations for all considered inhibition methods. We note that
our attacks are not specific to a particular diffusion model or implementation
since they are based on the compositional properties inherent to diffusion mod-
els [12,17]. In all the experiments, for each prompt, we generate images using 5
random seeds for each generation mode. Generation modes consist of Standard
Inference using the original SD model, Standard Inference using the inhibited
model, and Compositional Inference for each of our attacks (O1-3 for objects,
N1-3 for nudity). As described in Section 3.1, each attack defines the additional
concepts used in the generation.

The generation parameters (noise schedule, guidance scale, etc.) are selected
in accordance with each of the inhibition works. Since (UCE and ESD), (AC) and
(SA) use different generation parameters, the baselines are also slightly different
for the three groups.

4.1 Circumventing Nudity Inhibition

First, we attack the inhibition of the “nudity” concept.
Models. We use the model weights released by the authors of ESD [7] and
Selective Amnesia [10]; for UCE [8], we inhibit the model for the prompt “nudity”
using the official implementation. We do not evaluate SLD [26] since both our
attacks and SLD require access to the compositional inference, which means
SLD inhibition can be trivially disabled or negated in this scenario (achieving
baseline level). We do not evaluate AC [16] in this experiment since it has no
delineated protocol for inhibiting nudity.
Measure. A pre-trained NudeNet [23] model is used to detect nudity in the
generated images, and the number of images that contain a given nudity category
is used as the final metric.
Prompts. We use the I2P dataset [30] — a collection of prompts that invoke
nudity, violence or other inappropriate content in the generated images. In order
to limit the experiments to nudity, we follow [35] and filter a total of 95 prompts
that have nudity percentage value greater than 50%.
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Fig. 3: Detection of nudity categories using NudeNet [23] for the images generated
with original and inhibited SD models for I2P [30] prompts. Inhibition is achieved
using ESD-u [7], UCE [8], and Selective Amnesia [10] methods. While analysis of the
Standard Inference (SI) alone shows a significant reduction in the generated nudity
from original SD (gray) to inhibited SD (green), the Compositional Inference attacks
(red) defined in Table 2 demonstrate that the same inhibited models can still be used to
generate undesired content. In some cases, performing the attacks on inhibited models
even results in a higher nudity generation rates than those of the original SD model
(red bars larger than gray).

Results. We report the number of generated images that contain NudeNet cat-
egories in each generation mode for every inhibition method in Figure 3. Our
results show that while inhibtition significantly reduces the rate of nudity in
the images generated using standard inference, the inhibition does not entirely
eradicate the concept from the model. The modified models can still be used to
generate images with undesired content for each of the three considered nudity
categories. In some cases, the inhibited models can generate images with nudity
even more reliably than the unmodified baseline model.

4.2 Circumventing Object Inhibition

Next, we evaluate the attacks against the inhibition of object categories and
recognizable characters. Detailed information can be found in the supplementary.
Concepts. We extend Imagenette [14] set of categories (cassette player, chain
saw, church, English springer spaniel, French horn, garbage truck, gas pump, golf
ball, parachute, tench) used in the evaluation of [7] with additional ImageNet
categories (academic gown, paper towel, and zebra), as well as R2-D2 and Snoopy
characters used in [16].
Models. We obtain the inhibited models by using the official code released by
the authors of AC [16], ESD [7], and UCE [8]. Fine-tuning in AC and ESD-u
is performed using the suggested learning rates and number of iterations, 100
and 1000 respectively. We additionally evaluate the AC model fine-tuned for 200
iterations in order to test the attacks against stronger inhibition.
Measure. To quantitatively evaluate concept inhibition in a diffusion model,
inhibition works propose to use the original and the inhibited models to generate
images for a set of prompts and then measure how much of the target concept
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Fig. 4: Target concept reproduction rates (averaged over concepts) the original model
(gray) and inhibited with various methods. Generation using the attacks from Table 2
(red) demonstrates significantly higher reproduction rates of the “erased” concept com-
pared to standard inference (green).

is “present” in the two sets of images. A smaller presence value of the target
concept in the generated images indicates better concept inhibition. The same
methodology and the same metrics can be used to measure the efficiency of the
attacks (although with an inverse optimal direction).

Following AC [16], we use CLIP Score [11] to measure the presence of the
target concept in the generated images. Given a distribution of CLIP Scores
computed for a set of prompts, AC uses the mean of this distribution as the
metric of concept reproduction in the generated images. Despite having the same
mean, the sets of scores [0.5, 0.5] and [0.1, 0.9] can correspond to situations when
the concept is present in neither image (but the images have some correlation,
e.g . similar textures) or distinctly present in one of them. We propose a metric
that considers a threshold on the whole distribution of the CLIP Scores as a
more detailed measure of the concept presence in the generated images. We use
baseline model score percentiles as thresholds, to normalize for the differences in
the CLIP Score values for different concepts in the original model. Normalized
Reproduction rate at percentile p (NR@p) is computed as the percent of
images such that CLIP Score between the image and target concept string is
higher than the p-th percentile of the baseline scores. By definition, NR rate for
the baseline scores approaches 1− p for every value of p.
Prompts. Following [16], we use Chat-GPT API [22] for prompt generation.
We generate 20 prompts for each concept.
Results. We report the target concept NR rates for regular and attacked gener-
ations using models modified with the three inhibition techniques: AC, ESD-u,
and UCE, averaged over all concepts in Figure 4.

We observe that for every percentile, our attacks result in a significantly
higher concept reproduction rate, i.e., a fraction of images with high CLIP Score
values. This can be especially critical at high percentile values corresponding to
the images that have target concept present in a more pronounced way.

We see, that our attacks significantly overcome the inhibition when a sug-
gested default value of 100 iterations is used in AC (AC-100). When a stronger
inhibition is used (AC-200), our attacks are still successful, but to a lesser ex-
tent. ESD-u and UCE have higher inhibition rates, but our attacks still increase
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Fig. 5: Attacked generation using the model with inhibited concept ‘zebra’ (AC-100).
The reproduction rates (5a) show very few images for any percentile for the standard
inference, while the O3 attack shows a significant number of images with high CLIP
Scores. This is confirmed by the images with the highest CLIP Scores for the attacked
generation (5c) and the corresponding images using standard inference (5b).

the reproduction rates manyfold, sometimes generating multiple images where
0 images were generated using the standard inference. It is worth noting that
higher inhibition of ESD-u and UCE seemingly, comes at the cost of reduced
quality and variation in the generated images for other concepts.

We demonstrate reproduction rates for an individual case of inhibiting “ze-
bra” with AC-100 with an anchor prompt “horse” and the attacks in Figure 5.

5 Discussion

A straightforward conclusion from the presented work is that the current meth-
ods for inhibiting concepts in diffusion models are not robust to compositional
inference attacks, and inhibited models should still be guard-railed using post-
hoc techniques in high-risk scenarios. In order to defend against compositional
inference attacks, one has to break the hypothesis H1, that is, modify the outputs
globally (for all concepts), rather than locally (in the vicinity of the target).

A more general, and more important, contribution consists of building a
framework for understanding how linearity of conditional guidance can have an
impact on image generation process. This understanding is crucial when devel-
oping safety mechanisms in diffusion models. For example, if instead of a concept
inhibition, a watermarking method is developed such that its optimization task
follows Equation 3, and H1 holds (the changes in conditional guidance are lo-
cal), then such watermarking method would be vulnerable to the compositional
inference attacks. Our work opens up the floor for further investigation in this
direction, and we believe more research is necessary on the concept space and
linearity of conditional guidance to ensure safe and robust editing of diffusion
models.
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