
[Supplementary] DeTra: A Unified Model for Object
Detection and Trajectory Forecasting

Sergio Casas⋆, Ben Agro⋆, Jiageng Mao⋆†,
Thomas Gilles, Alexander Cui†, Thomas Li, Raquel Urtasun

Waabi, University of Toronto
{sergio, bagro, tgilles, tli, urtasun}@waabi.ai

This appendix describes implementation details, including architecture and training,
baselines, and metrics in Appendix A.

Additionally, we perform additional ablation studies in Appendix B to understand
the effect of different numbers of transformer blocks, different orderings of the attention
modules of DETRA, and varying the mode and time dimensions of the learnable query
volume.

Appendix C provides visualizations of DETRA compared to the baselines on the
Waymo Open Dataset (WOD).

Finally, Appendix D describes the limitations of our work and opportunities for
future work.

A Implementation Details

A.1 LiDAR Encoder

The LiDAR encoder takes H = 5 past LiDAR sweeps to produce multi-resolution
Birds Eye View (BEV) feature maps that serve as the LiDAR tokens for the refinement
transformer. Below, we describe the architecture of the LiDAR encoder, illustrated in
Figure 1, where we omit the batch dimension for simplicity.

Past LiDAR

(N
pt

s, 4
)

(N
pt

s, C
)

Scatter
Add (C

, L
, W

)

Voxelizer Backbone

MLP

Re
sB

lo
ck

Re
sB

lo
ck

Re
sB

lo
ck

Re
sB

lo
ck

Re
sB

lo
ck

Re
sB

lo
ck

Re
sB

lo
ck

Re
sB

lo
ck

Re
sB

lo
ck

Re
sB

lo
ck

C
on

v,
 B

N
, R

eL
U

C
on

v,
 B

N
, R

eL
U

C
on

v,
 B

N
, R

eL
U

Stride = 2 Stride = 1

(C
, L

/2
, W

/2
)

(C
, L

/4
, W

/4
)

(C
, L

/8
, W

/8
)

(C
, L

/1
6,

 W
/1

6)

Multi-Scale Deformable Attention

(C, L/4, W/4)

(C, L/8, W/8)

(C, L/16, W/16)

Multi-resolution
LiDAR Tokens

Fig. 1: The architecture of the LiDAR Encoder. The batch dimension is omitted from the tensor
shapes. Npts is the number of points, C is the number of channels, and L and W are the spatial
dimensions in BEV. The four features of each point are (x, y, z, t).

⋆ Denotes equal contribution
† Work done while at Waabi

2 S. Casas et al.

Voxelization: Each LiDAR sweep is a set of points with four features (x, y, z, t). A
small MLP is used to encode these points as feature vectors of size C = 128. The
LiDAR points are placed in a 2D BEV grid of shape (L,W) based on their (x, y)
coordinates with a simple sum aggregator. We use an ROI of [−40, 40] m on the x and
y dimensions for AV2, and [−80, 80] m on the x and y dimensions for WOD. We use
a voxel size of 0.1m, resulting in L = 80

0.1 = 800,W = 80
0.1 = 800 for AV2, and

L = 160
0.1 = 1600,W = 160

0.1 = 1600 for WOD. A 2D feature map of shape (C,L,W)
is then generated from this BEV grid, where each grid cell has a feature vector that is
the sum of the features from all points in that grid cell.

Backbone: This 2D feature map is processed by three convolution layers interleaved
with batch-normalization and ReLU layers, The first convolutional layer has a stride of
2, resulting in a feature map of shape (C,L/2,W/2). Then, this feature map is pro-
cessed by a series of ten residual layers, labeled ResBlock in Figure 1, which each
employ a sequence of dynamic convolution [2], batch-normalization, ReLU, dynamic
convolution, batch-normalization, squeeze-and-excitation [4], and dropout operations.
Each residual layer produces a feature map, and layers 0, 2, and 4 down-sample their
output by a factor of 2 (using convolutions with stride 2). We extract three multi-
level feature maps from the output of layers 1, 3, and 9 with shapes (C,L/4,W/4),
(C,L/8,W/8), and (C,L/16,W/16) respectively, across which information is fused
with multiscale deformable attention [11] to produce three feature maps with the same
shapes as the input.

A.2 Map Encoder

We follow [3, 5] for lane graph generation and map encoding. Specifically, our lane
graph is constructed by selecting centerlines from HD maps at fixed intervals of 3m.
These centerlines are divided into lane segments, each represented by a node in the
graph with features including length, width, curvature, speed limit, and lane boundary
type (e.g., solid or dashed). To establish connections between lane nodes, we employ
four types of relationships: successors, predecessors, left neighbors, and right neigh-
bors. We leverage the graph neural network in [3] to encode the lane graph nodes with
pair-wise relative positional encodings and use the map node embeddings as the map
tokens.

A.3 Initial pose header

To produce the initial poses P(0), we use a small Feature Pyramid Network [7] where
the three multi-resolution feature maps are fused into a single feature map of shape
(C,L/4,W/4). Then, four convolution layers interleaved with batch-normalization and
ReLU layers predict a heatmap of bounding-box parameters, and a separate set of four
convolutional layers predict a heatmap of detection scores. These heatmap outputs are
turned into object detections via NMS with an IOU threshold of 0.1.

Title Suppressed Due to Excessive Length 3

A.4 Metrics

OccAP: To compute this metric, we do the following:

1. Generate a ground truth spatio-temporal occupancy grid of shape (T, L,W), where
T is the number of forecasted timesteps, and L and W are the spatial dimensions
defined in Appendix A.1. Each grid cell is filled with 0.0 if it is unoccupied and
1.0 if it is occupied, using the ground truth future trajectories for each object to
compute this occupancy.

2. Generate a predicted spatio-temporal occupancy grid of shape (T, L,W), where
the values in the grid cells range from [0.0, 1.0] and represent the probability that
an object occupies that cell. To obtain these probabilities, we rasterize all F modes
of each detected object, where each mode has an occupancy probability equal to the
product of its detection confidence and mode confidence. We deal with overlapping
modes appropriately, setting the probability in the grid cell equal to 1 minus the
probability that no mode occupies the cell.

3. Compute the average precision (AP) of the predicted occupancy grid with respect to
the ground truth occupancy grid. For 100 evenly spaced threshold values between 0
and 1, we compute the number of true positives, false positives, and false negatives
and then compute the precision and recall at each threshold. We compute AP as the
area under the precision-recall curve.

TrajAP: This metric closely follows the Soft AP metric used in the Waymo Motion
Prediction Challenge [9]1, but we make the following modifications to adapt it to our
detection-trajectory forecasting setting. First, we threshold all detections at the thresh-
old that attains their maximum F1 score. We consider a trajectory as a match only if
its detection matches with a specific IOU score and its forecasted trajectory matches
(using the same definition in the original Soft AP metric). The final metric we report is
a macro average across future time horizons of 3 s and 5 s, detection IOU thresholds of
0.5 and 0.7, and static and dynamic actors.

To compute the metric on static (or dynamic) actors only, we set the dynamic (or
static) actors to “ignore", and any detection or trajectory forecast that matches with an
ignore label is removed (not counted).

A.5 Baselines

Detection: All baselines use the same LiDAR encoder as DETRA (see Appendix A.1)
as part of their detection network. Likewise, their detections are produced with the same
header as our prior object detection header described in Appendix A.3. The detection
loss is the same as our initial pose loss described in the main paper.

Tracker : To associate detections over time and create tracks as input to MultiPath,
LaneGCN, SceneTF, and GoRela, we use the online heuristics tracker described in
[10]2. We perform tracking in the forward direction so it can run online and provide
a fair comparison against the end-to-end methods, which also run online.

1 https://waymo.com/open/challenges/2023/motion-prediction/
2 see the supplementary here https://arxiv.org/pdf/2311.02007.pdf for details

https://waymo.com/open/challenges/2023/motion-prediction/
https://arxiv.org/pdf/2311.02007.pdf

4 S. Casas et al.

Trajectory Forecasting : We faithfully reproduce the trajectory forecasting models
described in each method’s paper. We can directly use the tracks as input for the modular
detection-tracking-forecasting models because the trajectory forecasting methods were
developed to ingest tracks. For these models’ End-to-end (E2E) versions, we replace
per-actor track features with per-actor LiDAR features. We applied a rotated ROI pool
inside each detected bounding box on the BEV feature map output from the feature-
pyramid network to obtain these features.

All methods use the same prediction loss as DETRA, described in the main pa-
per: a Laplacian winner-takes-all loss on the mixture of trajectories and a cross-entropy
loss on the mode probabilities, where the winner mode is the one with trajectory way-
points closest to the ground truth, measured with an L1 loss on the Laplacian centroids
(µx, µy).

Training Details: We train all methods with the same learning rate schedule, optimizer,
and batch size as DETRA, with equal relative loss weighting between the heatmap de-
tection loss and the prediction loss.

B Additional Quantitative Results

What is the effect of refinement depth? Table 1 shows the performance of DETRA
with different numbers of refinement blocks. We observe that the performance of DE-
TRA improves from 1 to 3 refinement blocks but then plateaus. We expect different
training recipes, hyper-parameters, and amounts of data would be necessary to scale
DETRA, which we leave as room for future work.

of refinement blocks Joint Detection Forecasting

AP ↑ AP @ IoU ↑ MR ↓ ADE ↓ FDE ↓ bFDE ↓

Occ Traj @0.3 @0.5 @0.7 K = 1 K = 6 K = 1 K = 6 K = 1 K = 6 K = 6

1 71.2 46.7 95.5 92.3 78.6 38.7 18.7 1.76 0.61 4.07 1.33 1.99
2 72.5 48.4 95.8 93.1 80.1 37.7 16.5 1.62 0.57 3.77 1.21 1.88
3 (DETRA) 73.0 50.0 95.8 92.9 80.2 37.0 15.4 1.54 0.55 3.59 1.19 1.86
4 72.3 49.8 95.6 92.8 80.8 37.2 18.7 1.55 0.54 3.63 1.14 1.81
5 72.0 47.8 95.8 92.8 79.9 37.8 16.5 1.6 0.55 3.72 1.18 1.84

Table 1: DETRA’s performance using different numbers of refinement blocks on AV2. Note that
unlike Table 3 in the main paper, where one version of DETRA was trained with 3 refinement
blocks and evaluated after each refinement block, here we trained 5 different versions of DETRA

and evaluated the final output.

Does the ordering of the attention layers matter? Table 2 shows the performance of
DETRA with different orderings of the attention layers. The main finding from this is
that it is important for the self-attention modules (time, mode, object) to come after the
cross-attention modules (lidar and map). This result makes sense intuitively because
the self-attention modules are meant to propagate sensor information (obtained in the
cross-attention modules) across the query volume, and they cannot do that if applied

Title Suppressed Due to Excessive Length 5

before the cross-attention modules. Besides that, the order within cross-attention (lidar
and map) or self-attention (time, future mode, object) matters little. However, we find
the selected order of lidar, map, time, future, and object to be the best in most metrics.

Ordering Joint Detection Forecasting

AP ↑ AP @ IoU ↑ MR ↓ ADE ↓ FDE ↓ bFDE ↓

Occ Traj @0.3 @0.5 @0.7 K = 1 K = 6 K = 1 K = 6 K = 1 K = 6 K = 6

L,M,O, T, F 72.1 49.9 95.7 92.8 80.5 36.9 15.2 1.54 0.56 3.59 1.19 1.86
T, F,O, L,M 71.3 47.6 95.7 92.7 79.9 38.1 17.4 1.65 0.58 3.84 1.26 1.92
M,L, T, F,O 72.7 50.5 95.5 92.8 79.6 37.1 16.2 1.55 0.55 3.62 1.18 1.85
DETRA (L,M, T, F,O) 73.0 50.0 95.8 92.9 80.2 37.0 15.4 1.54 0.55 3.59 1.19 1.86

Table 2: DETRA’s performance using different orderings of the attention blocks on AV2. Here
L, M , T , F , and O stand for the LiDAR, Map, Time, Mode, and Object attention modules, re-
spectively.

How does DETRA perform with different learnable query volume dimensions?
Table 3 shows the performance of DETRA with different query volume dimensions.
Specifically, we experiment with varying the mode dimensionality F ∈ {1, 6} and time
dimensionality T ∈ {1, 10}. Note that the output trajectories still have ten timesteps
and six modes regardless of the input query volume dimensions because we adjust the
output dimensionality of the MLP in the pose update accordingly. The time dimension
T = 10 is crucial for good trajectory forecasting performance, e.g., see the OccAP
and TrajAP metrics. This result makes sense because gathering information from future
time queries about the map and interactions with other objects is essential for trajectory
forecasting. The mode dimension F = 6 is also important for trajectory forecasting per-
formance, particularly in the forecasting metrics at K = 6, which is expected because
having the mode dimension from the beginning (as opposed to just as part of the MLP
decoder) allows these modes to differentiate more from each other in meaningful ways,
enabling learning of more diverse trajectory forecasts that cover multiple possible fu-
tures. Detection gets slightly degraded at high IoUs when using multiple modes or time
steps, which shows that there may be room for improvement in the mode aggregation
over query features and potentially using causal attention in the time dimension.

Query Volume Dims Joint Detection Forecasting

AP ↑ AP @ IoU ↑ MR ↓ ADE ↓ FDE ↓ bFDE ↓

Occ Traj @0.3 @0.5 @0.7 K = 1 K = 6 K = 1 K = 6 K = 1 K = 6 K = 6

T = 1, F = 1 50.1 40.0 95.9 93.0 80.6 41.8 40.6 2.7 2.28 5.76 4.74 5.1
T = 10, F = 1 71.7 45.5 95.8 92.7 79.3 39.3 19.9 1.79 0.64 4.16 1.4 2.05
T = 1, F = 6 67.1 45.4 95.5 92.3 78.4 42.0 22.9 2.06 0.92 4.47 2.26 2.92
DETRA (T = 10, F = 6) 73.0 50.0 95.8 92.9 80.2 37.0 15.4 1.54 0.55 3.59 1.19 1.86

Table 3: DETRA’s performance using different query volume dimensions on AV2.

6 S. Casas et al.

SceneTransformer MultiPath E2E GoRela E2E DETRA

Pred

GT

0s

5s

0s

5s

Fig. 2: Qualitative results on WOD.

C Additional Qualitative Results

Figure 2 shows qualitative results on WOD for DETRA and the baselines. Similarly to
the results on AV2 shown in the main paper, DETRA exhibits more accurate trajectory
forecasts and detections than the baselines.

Figure 3 shows the self-improvement of DETRA over transformer refinement blocks
on WOD. Again, we see that the trajectories follow the map more accurately over trans-
former refinement blocks, and the detections become more accurate, with limited gains
between the second-last and final refinement blocks.

Title Suppressed Due to Excessive Length 7

DETRA i = 0 DETRA i = 1 DETRA i = 2 DETRA i = 3

Fig. 3: Visualizing the DETRA’s self improvement over refinement blocks on WOD.

D Limitations and Future Work

While our work provides a simpler approach to object detection and trajectory forecast-
ing based on trajectory refinement that achieves better results than previous paradigms,
it has several limitations.

DETRA does not consider uncertainty on its detections beyond the confidence score.
This design follows the standard in detection literature, but there are likely better meth-
ods than this. Instead, future works could consider multiple detection hypotheses similar
to how multiple modes are considered for motion forecasting. Our method is very suit-
able for this since we already have a query and pose volume with a mode dimension,
but right now, all the poses at t = 0 are updated to be the same. The main challenge to
extend detection to multi-hypothesis remains in developing strong objective functions
for training and metrics for evaluation.

8 S. Casas et al.

Another limitation is that in the current experiments, we did not consider the task
of joint future forecasting across agents [1,8], only marginal forecasting for each agent.
This task would be a good benchmark to evaluate the object-to-object interaction un-
derstanding of DETRA, but it is out of scope for this paper.

Finally, we did not tackle the problem of temporal consistency of detection and fore-
casts over multiple forward passes at consecutive frames. Traditional approaches track
the detections and forecasting outputs, which could be applied to DETRA [6]. Future
work may explore how to learn better temporal consistency in the DETRA framework.

Despite its limitations, we hope DETRA can lay a strong foundation for future work
on end-to-end detection and forecasting.

References

1. Casas, S., Gulino, C., Suo, S., Luo, K., Liao, R., Urtasun, R.: Implicit latent variable model
for scene-consistent motion forecasting. In: ECCV (2020) 8

2. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: Attention over
convolution kernels. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11030–11039 (2020) 2

3. Cui, A., Casas, S., Wong, K., Suo, S., Urtasun, R.: Gorela: Go relative for viewpoint-invariant
motion forecasting. arXiv preprint arXiv:2211.02545 (2022) 2

4. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 7132–7141 (2018) 2

5. Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., Urtasun, R.: Learning lane graph
representations for motion forecasting. In: ECCV. Springer (2020) 2

6. Liang, M., Yang, B., Zeng, W., Chen, Y., Hu, R., Casas, S., Urtasun, R.: Pnpnet: End-to-end
perception and prediction with tracking in the loop. In: CVPR (2020) 8

7. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid net-
works for object detection. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2117–2125 (2017) 2

8. Ngiam, J., Caine, B., Vasudevan, V., Zhang, Z., Chiang, H.T.L., Ling, J., Roelofs, R., Bewley,
A., Liu, C., Venugopal, A., et al.: Scene transformer: A unified architecture for predicting
multiple agent trajectories. arXiv preprint arXiv:2106.08417 (2021) 8

9. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou,
Y., Chai, Y., Caine, B., et al.: The waymo open motion dataset. https://waymo.com/
open/motion/ (2020) 3

10. Zhang, L., Yang, A.J., Xiong, Y., Casas, S., Yang, B., Ren, M., Urtasun, R.: Towards unsuper-
vised object detection from lidar point clouds. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 9317–9328 (2023) 3

11. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers
for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020) 2

https://waymo.com/open/motion/
https://waymo.com/open/motion/

	[Supplementary] DeTra: A Unified Model for Object Detection and Trajectory Forecasting -7pt

