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Abstract. The field of image synthesis has made tremendous strides
forward in the last years. Besides defining the desired output image with
text-prompts, an intuitive approach is to additionally use spatial guid-
ance in form of an image, such as a depth map. In state-of-the-art ap-
proaches, this guidance is realized by a separate controlling model that
controls a pre-trained image generation network, such as a latent diffu-
sion model [64]. Understanding this process from a control system per-
spective shows that it forms a feedback-control system, where the control
module receives a feedback signal from the generation process and sends
a corrective signal back. When analysing existing systems, we observe
that the feedback signals are timely sparse and have a small number of
bits. As a consequence, there can be long delays between newly gener-
ated features and the respective corrective signals for these features. It is
known that this delay is the most unwanted aspect of any control system.
In this work, we take an existing controlling network (ControlNet [88])
and change the communication between the controlling network and the
generation process to be of high-frequency and with large-bandwidth. By
doing so, we are able to considerably improve the quality of the generated
images, as well as the fidelity of the control. Also, the controlling network
needs noticeably fewer parameters and hence is about twice as fast dur-
ing inference and training time. Another benefit of small-sized models is
that they help to democratise our field and are likely easier to under-
stand. We call our proposed network ControlNet-XS. When comparing
with the state-of-the-art approaches, we outperform them for pixel-level
guidance, such as depth, canny-edges, and semantic segmentation, and
are on a par for loose keypoint-guidance of human poses. All code and
pre-trained models will be made publicly available.

Keywords: Text-to-Image Generation · Controlling Image Generation
Models · Feedback-Control Systems

1 Introduction

Using Generative Artificial Intelligence to synthesize new images is a topic that
has received large attention in social media, press, research and industry. It
started off in 2014 with the introduction of Generative Adversarial Networks
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Fig. 1: Image synthesis using our approach with text-prompts, as well as, a guidance
image in form of a depth map, canny-edges image, semantic map, and human pose.
The two results on the left-hand side were generated by the production-quality model
of Stable Diffusion XL [53], and the remaining by Stable Diffusion Version 1.5.

(GAN) [19] that were able to synthesize small-sized images of a given class [56],
e.g . celebrity faces. Today, we have commercial and non-commercial products,
such as Midjourney [1] and Stable Diffusion XL [53], which are able to gener-
ate large-sized images (up to 1024 × 1024) with almost arbitrary content, e.g .
ranging from professional photographs to Manga Art. This can be considered as
a truly disruptive technology, for which the development is still far from being
completed. One ongoing development is to create control tools, with which users
can steer the image generation process towards their desired output. A common
control mechanism is text-prompts. Another choice is to use a guidance image,
which defines the desired output image in an abstract form such as a sketch
or a depth map. This control mechanism is known as image-to-image transla-
tion, e.g . [30]. The control mechanisms can also be combined by adding one or
many guiding images to a text-to-image model, e.g . [88]. Our work falls into this
class of methods. There are in general two different choices for implementing the
image guidance in a text-to-image model.

On one hand, there is the approach of fine-tuning a generative model with a
new control mechanism at hand, e.g . [79], or training it from scratch e.g . [64].
Such methods use guidance images as additional input. However, such an end-to-
end learning approach is challenging since oftentimes there is a large imbalance
between the original training data for the generative process, e.g . ∼ 3B images
for training Stable Diffusion [64], in contrast to only 1M images with known
control, as in [88]. Such an imbalance can lead to effects like “catastrophic forget-
ting” [46], which means that known properties of the generative model disappear
after fine-tuning. Additionally, fine-tuning often requires access to a large com-
puting cluster.

On the other hand, there are approaches that lock the parameters of the
generative network and then train a separate controlling network. In general,
the idea of two networks communicating with each other has been shown to be
beneficial for various computer vision tasks [42, 43, 76, 80]. In our context, this
particular design choice [47] is currently most popular and also utilised in this
work.

When analysing this approach from a control system perspective, we see
that nearly all existing approaches are feedback-control systems, also known as
closed-loop control systems. The controlling network is the controller and the
generation processes is a dynamically changing system. The only exception is
the T2I-Adapter approach [47] since it forms an open-loop control system where
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the controlling network does not receive any feedback from the generating net-
work. From a control system perspective, it is of paramount importance that
the controller receives feedback from the generation process as often as possi-
ble (i.e. high-frequency) and also as much useful information as possible (i.e.
large-bandwidth). Furthermore, the controller should send as often as possible
a control signal back to the generation process. In a typical hardware control
system, such as a manufacturing plant, there are physical limitations to achieve
this. However, with software, we do not have such limitations. Unfortunately, to
the best of our knowledge, all existing guided image generation methods which
work as feedback-control systems [27,54,88,90] fall short in terms of designing a
bidirectional, high-frequency and large-bandwidth communication between the
controller and the generation process. The main contribution of our work is to
construct a control system with these properties. For this, we use ControlNet [88]
as our initial controlling network. While improving the communication mecha-
nism, we observe that we can scale down the number of parameters of ControlNet
by a factor of 6.5 (or even more), and at the same time improve the quality of
the generated images as well as the fidelity of the control. As a result, we are
about two times faster than ControlNet with respect to inference and training
time. We call our network ControlNet-XS. Another benefit of small-sized models
is that they help to democratise our field and are likely easier to understand. It
is important to note that our main contribution, a bidirectional, high-frequency
and large-bandwidth communication, can also be integrated into all other exist-
ing guided image generation approaches that are designed as a feedback-control
system [27, 54, 88, 90]. Furthermore, also approaches in related fields of genera-
tive Artificial Intelligence which utilise a feedback-control system could benefit
from our contribution, such as video translation [15,92] or controlled 3D object
generation [29,87].

Let us consider an example which illustrates the importance of having a
high-frequency communication between the controller and the generation pro-
cess. Assume that the generation process is a vehicle, which is equipped with a
controller that is a satellite navigation system. The controller receives the cur-
rent position of the vehicle, and gives back control signals such as “turn left at
next junction”. Assume that the target or input to the system is to drive to a
specific address. A crucial requirement of this control system is, obviously, that
the navigator knows always the exact position of the vehicle. However, if the
navigator were to know the position of the vehicle with a delay of ten seconds,
then the vehicle might have already passed the junction where it should have
turned left. Hence, the controller has to be smart and predict where the vehicle
may be in ten seconds time in order to give commands that are sensible for
the vehicle at that point of time in the future. This is exactly what happens
in all existing approaches for guided image generation that are designed as a
feedback-control system. Due to delayed feedback of the generation process to
the controlling network, it has to guess what the generation network is doing
until it sends its controlling signal. Hence, for this task, the controlling network
needs generative power.
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In summary, our contributions are as follows: (1) Demonstrating the impor-
tance of controlling a text-to-image generation model with a bidirectional, high-
frequency and large-bandwidth communication. (2) Training a straight-forward,
small-sized controlling network that outperforms the state-of-the-art for pixel-
level image guidance (depth, canny-edges, semantic map) and is on a par for
loose keypoint guidance of human poses. (3) Controlling the production-quality
Stable Diffusion XL model [53] with 2.6B parameters with a control network
that has only 20M parameters.

2 Related Work

2.1 Image Generation and Translation

Generative Adversarial Networks (GANs) [19] are probably the most estab-
lished generative models for unconditional [33–35], class-conditional [71] and
text-conditional [31, 62, 63, 70, 77, 82, 86, 94] image generation as well as domain
adaptation [48,81,93]. While achieving state-of-the-art results for particular se-
mantic classes [32, 67, 78], generalizing GANs to synthesize images of arbitrary
content remains an active area of research. With GigaGAN [31] demonstrating
state-of-the-art performance, generic text-to-image synthesis is still dominated
by autoregressive networks like DALL-E [59], Parti [85], CogView [13], Make-
A-Scene [16] and Diffusion Models in particular. Since their introduction, Im-

age Diffusion Models [73] rapidly became one of the best performing model-
families [12,23,24,36,50,74]. Diffusion models learn to transform a point from a
simple, high-dimensional distribution, such as a Gaussian, to a complex distri-
bution, like the space of all images. This transformation is done by iteratively
applying a network that gradually removes the Gaussian noise in the image. This
process allows to theoretically model arbitrary complex data distributions [73].

Conditioning Image Synthesis Models. To generate a desired output
image, one popular choice is to use text-prompts as guidance. This is done by
conditioning a generic image synthesis model on a textual-embedding, provided
by pre-trained text-encoders like BERT [11], T5 [57] or CLIP [55]. Such condi-
tioning has led to impressive results for complex text-to-image generation task
by models like Stable Diffusion [64], DALL-E [3,58], Imagen [69] and many oth-
ers [49, 53, 83]. However, text-prompts alone provide very little control over the
exact details within the generated image. To address this problem, the concept
of guidance images became popular. Guidance images describe the desired out-
put scene in an abstract form. This ranges from very loose guidance, such as
bounding boxes and keypoints for human poses, on to slightly more precise con-
trols like semantic maps or sketches, and up to pixel-accurate guidance, such as
depth maps, normal maps, or edge maps.

As mentioned in the introduction, one line of work is to utilize guidance
images as conditioning before training the model [14, 28, 38, 68, 83]. Another
variant is to adapt a pre-trained model by fine-tuning it with new guidance
images [26,79]. However, the drawbacks of both approaches are that they require
substantial computational resources to train, and also that conditional modalities
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cannot be changed without excessive re-training. The more popular approach is
to train a separate controlling network which is combined with a pre-trained
generation model, as discussed in the next section.

Image Editing and Subject-Driven Image Generation. There have
been many works leveraging the rich internal representation of pre-trained text-
to-image models to customise the output. This usually involves the editing of an
existing image [2,9,10,18,37] or the insertion of a specific subject instance to the
generated output [17,51,66,84]. The approach of DiffEdit [10] takes an existing
image and utilises local masks to manipulate the content. InstructPix2Pix [4]
trains an image generation model to edit images according to human instructions.
This is done by learned image-editing instructions. Dreambooth [66], on the
other hand, fine-tunes a pre-trained text-to-image generation model to a set of
photographs representing a specific subject, binding it to a text-token which
can be used to generate the desired subject in a new environment. In general,
such approaches can be considered as complementary to works that use pixel-
accurate image guidance, such as ours, since these approaches do not control the
generated, or edited, content on a pixel-level.

2.2 Controlling Pre-Trained Networks

With the increasing size of generative models, it has become popular to leave
the generative base model unaltered in order to keep its generative capabili-
ties. A straight-forward approach is to employ weight-adaptation methods like
“Low-Rank-Adaptation” (LoRA) [25] to add a learnable offset to the pre-trained
weights, which are approximated by the multiplication of two low-rank matrices.
After training, the weights can be merged without the need to add new param-
eters to the network. Beyond this simple approach, there are in general three
concepts for controlling image generation models by the addition of new network
components, although these concepts cannot always be clearly distinguished.

Adapters. One control mechanism is to use so-called adapters, which insert
new trainable modules, e.g . neural blocks, to the pre-trained generative network.
However, in contrast to LoRA the inference time increases. Adapters are popular
in natural language processing [45, 52, 75] and have been transferred to image
generation models [61, 65], vision transformers (ViT) [39], and are also used for
dense predictions in the form of ViT-Adapters [8]. In the context of our work,
there is one adapter-based approach, T2I-Adapter [47], which uses a guidance
image to control a pre-trained text-to-image Stable Diffusion model. It is an
open-loop control system where features, derived from the guiding image, are
added to the generation model. There is no feedback signal from the generation
process back to the controlling network. We validate experimentally that it is on
average inferior to feedback-control systems.

Image Control with Attention Maps. Another popular control mecha-
nism is to manipulate the attention maps of the diffusion model [7,20,40,44,91].
One example of such an approach is GLIGEN [40], to which we compare exper-
imentally. GLIGEN introduces new learnable gated attention layers to incorpo-
rate the guidance. While this gives impressive results for loose guidance, such
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as bounding boxes, we validate experimentally that for pixel-accurate guidance,
like depth maps, it performs rather poorly compared to methods discussed next.

Image Control with a Separate Controlling Network. The final ap-
proach for controlling a pre-trained image generation model is to train a separate
controlling network, which generates features that are combined with the gener-
ation model. This is also our approach. The first work in the context of diffusion
models was ControlNet [88] which trains a separate controlling network for each
kind of guidance image. Building on the design of ControlNet, three recent works
appeared that allow to use multiple guidance images jointly within one control-
ling model. These are UniControl [54], Uni-ControlNet [90] and Cocktail [27].
The main focus of these works is to design neural networks that merge multi-
ple control signals. For instance, UniControl uses a Mixture-of-Experts (MOE)
Adapter in combination with a task-aware network. By doing so, each of these
works add additional “concepts” on top of the initial ControlNet model: i) an ad-
ditional text-embedding in the control signal [54], ii) a global control adapter [90],
iii) additional manipulation of attention maps of the encoder of the generation
model [27]. In contrast to these works, we focus on single image guidance. We
also use ControlNet as initial model, but then only reduce its size without adding
any other “concept”. Our key contribution is a new communication mechanism
between the controlling and generating networks, which is different to all four
works [27, 54, 88, 90]. By doing so, we are able to improve over the state-of-the-
art. It is important to note that our improved communication mechanism can
also be integrated into Uni-ControlNet, UniControl and Cocktail.

3 Method

We start with a brief introduction to the Stable Diffusion [64] architecture, which
serves as our generative model (Section 3.1). The pre-trained generative model is
controlled by a controlling network. In Section 3.2 we analyse the design of exist-
ing controlling network architectures from a feedback-control system perspective.
In this work, we build upon ControlNet [88] as a controlling network which we
describe in Section 3.3. Lastly, in Section 3.4, we introduce our ControlNet-XS
network and its training procedure in Section 3.5.

3.1 Stable Diffusion

Stable Diffusion [64] is a U-Net based diffusion model for text-to-image gen-
eration. As a conditional diffusion model, it receives a text embedding from a
separate text encoder, as well as a learned time embedding. The output image
is reconstructed from noise by iteratively running the U-Net over, for example,
50 time-steps. The U-Net generator is composed of a sequence of neural blocks
involving cross-attention mechanisms for text conditioning. The image signal is
processed by the encoder in four layers with diminishing resolution and three
neural blocks per layer. Through the mirrored structure of the decoder and one
middle block in between, the U-Net has a total of 25 neural blocks. The output
of each neural block can be influenced individually by a controlling network.
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Fig. 2: Feedback-Control System Perspective. In each figure (a-c) the generation
process is on the left-hand side, and the control process on the right-hand side. The
focus of this illustration is on the communication (directed arrows) between the genera-
tion and controlling process. (a) Feedback-control system for approaches [27,54,88,90],
where links denoted by * are only present in [27]. (b) An example of our communica-
tion design. (c) Zoom into the connections between a generative encoder block and a
ControlNet-XS block. Please find the explanation for this figure in Section 3.2

3.2 Feedback-Control System Perspective

In Figure 2a-b we analyse two different design choices for controlling a generation
process. Feedback-control systems for approaches [27,54,88,90] are shown in (a),
where links denoted by * are only present in [27].1 Note that we only illustrate the
generation and controlling networks and their respective communication links.
The approaches [27, 54, 90] have additional networks and communication links
(see Section 2) which are omitted here, since it is not relevant to our analysis. The
main drawback of design (a) is that there can be generated features, illustrated
by the red rectangle in the encoder, at time t of the generation process, that
evolve in the generative U-Net and receive a control signal only at time t+1 (two
red arrows pointing towards U-Net). However, by that time, they have travelled
through 35 generative blocks (or 25 blocks if * links are present). The two red
paths show possible flows through the network which start at the generated
features (red rectangle) and pass through the controlling network until they
form the control signals for the generative process at time t+ 1 (red arrow with
* or without *). There is no earlier control signal that is aware of the generated
features (red rectangle). In our design (b), this drawback is eliminated and such
features (red rectangle) receive a control signal after one generative block.

Besides implementing a high-frequency communication, the bandwidth of
the connection may also play a crucial role. When measuring the bits that travel
through the networks, we notice that rather few bits go from one time-step to the
next time-step of the generation process (precisely 524K bits for a latent image
of size 64×64×4). This is the only feedback to the controlling network in design
(a). In contrast, the total number of bits entering the controlling network in
(b) is 212M bits, which is over 404 times more.2 The conclusion of this analysis

1 The * links adapt the attention maps of the generative encoder.
2 The size of the features is measured where they leave the generative model.
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Fig. 3: Architectural choices. Different design-sketches for controlling a U-Net based
generation process with a controlling network. The generation process is in each ex-
ample on the left-hand side and the control process on the right-hand side. (a) The
architecture of ControlNet [88]. (b-c) Three new architectures (Type A-C) proposed in
this work. We verify experimentally that model Type B performs better than Type A,
and is on a par with Type C. We choose Type B as our final architecture, and call it
ControlNet-XS, since it has fewer parameters than Type C.

is that in (a) the controlling model may face an even more challenging task,
compared to design (b), for computing the appropriate control signal since it
receives far less input from the generative process.

3.3 ControlNet

The ControlNet [88] architecture is sketched in Fig. 3a. It starts with a pre-
trained generative model, here the U-Net of Stable Diffusion [64]. The control
model copies the encoder of the U-Net and hence has a representation that is
capable of generating images by itself. The control encoder receives the control
signal, e.g . in form of a depth map, as well as the intermediate, noisy generated
image. It outputs control signals that are fed into the different decoder blocks of
the generative process. The connections from the control model to the generation
model are initialized by so-called zero-convolutions, which have the effect that
the generative capabilities of the controlled U-Net are not diminished at the
beginning of training. During training, the encoder can learn to provide useful
control signals to the generative process. The training objective is the same
as for Stable Diffusion, i.e. image denoising (see Section 3.5). While these may
seem like reasonable design choices at first glance, they are sub-optimal from the
perspective of a controlling system, as illustrated in Figure 2a and discussed in
Section 3.2. In brief, the control model has two jobs at once: i) It has to process
the feedback signal in order to make it useful for the generation process; ii) It
has to anticipate what the generation process is going to do until the control
signal is received by the generation model. We remedy the second job, and hence
the control model can focus on the first one.

3.4 ControlNet-XS

In Section 3.2 we have motivated our communication mechanism between con-
trolling and generating network. The key idea is that the two encoders have an
interaction with high-frequency. Based on this, we design three variants Fig. 3b-
Fig. 3d. They vary in terms of connectivity between the two encoders and the two
decoders, respectively. From a feedback-control system perspective, designs (c)
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and (d) are good, since they have a high-frequency communication between the
two encoder networks. In design (b) there are also many so-called control-loops,
however, for each loop the generative network does still uncontrolled processing
within the loop. We validate experimentally that model Type B is superior to
A and on a par with Type C. Hence, we choose Type B as our final architec-
ture since it has fewer parameters than Type C. We call Type B architecture
ControlNet-XS. A detailed illustration of the architecture of Type B is in the
supplement. The key building block for connecting the generation network and
ControlNet-XS is shown in Figure 2c. The calculated features are processed by
zero-convolutions and added to the calculated features of the counterpart. Fea-
tures coming from the generative block can be either added or concatenated to
the features of the control block. Because we train the controlling network from
scratch we utilise concatenation. Our new design allows to drastically reduce the
size of the controlling network, by consistently changing the number of channels
in each control layer. We validate experimentally that even a model with as little
as 1.7M parameters performs on a par with ControlNet [88] with 361M param-
eters. Note that in ControlNet, a version of ControlNet with fewer parameters,
called ControlNet-light, was evaluated but found to perform inferior.

3.5 Training

As in related works, all weights of the generative model are frozen during training
and we only learn the weights of the controlling network. Due to our improved
design (Type A-C), we do not need the generative power of the controlling net-
work, and hence all parameters are initialized randomly. We observe that the
zero convolutions (see Figure 2c) help to stabilize training. We train a separate
controlling network for each kind of guidance. As training data, we use one mil-
lion images from the Laion-Aesthetics dataset [72]. For getting guidance images,
we follow ControlNet [88] and extract canny-edges, use ground truth segmenta-
tion maps, predict the depth maps with MiDaS [60], or predict human keypoints
with OpenPose [6]. The standard diffusion model objective remains unchanged:

L = Ez0,t,ct,cf ,ϵ∼N (0,1)

[

∥ϵ− ϵθ(zt, t, ct, cc)∥
2
2

]

, (1)

with the target image z0, the noisy image zt, the timestep t, the text conditioning
ct and the control conditioning cc.

4 Experiments

We start by defining the evaluation metrics (Section 4.1), and then analyse varia-
tions of our new model in terms of architecture and size (Section 4.2). Section 4.3
is an in-depth, quantitative comparison to state-of-the-art approaches. The next
Section 4.4 discusses a semantic bias induced by large control models. Finally,
to demonstrate the versatility of our approach, we apply it to a larger generative
model, namely Stable Diffusion XL (Section 4.5). If not stated differently, we
use Stable Diffusion Version 1.5 as the generative model.
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4.1 Evaluation Metrics

We evaluate performance by estimating the fidelity of the control and the quality
of the generated images, to ensure that the generated quality does not reduce
with respect to uncontrolled image generation. For quality evaluation, we use
the CLIP-Score [21] which approximates the similarity between a given text-
prompt and an image, and the CLIP-Aesthetics score [72] which approximates
the aesthetic appearance of an image as perceived by humans. The fidelity of
the control is evaluated implicitly with the Learned Perceptual Image Patch
Similarity (LPIPS) [89] and explicitly by a distance measure between two images,
which is MSE for depth control, denoted by MSE-depth, mIoU for semantic
map control, and the Hausdorff distance (HDD) for canny-edges and human
poses (i.e. keypoints). Here, the first image is the reference control image, e.g .
the depth map, and the second image is the extracted control, e.g . the depth
map from the generated image. The extraction algorithm is the same as the one
used to generate the training data, i.e. MiDaS [60] for depth extraction. Note
that for improved readability, the MSE-depth values are scaled by 103 and the
Hausdorff distance is scaled by 10−1. We also compute the Fréchet Inception
Distance (FID) [22]. We evaluate the semantic map control with the COCO-
Stuff [5] validation set of 5000 images and all other controls with the COCO [41]
validation dataset of 5000 images.

Note that for pixel-accurate guidance (i.e. depth and edges) the FID score
measures both quality and fidelity of control since the control signal comes from
a target image of the respective COCO validation set and hence the features of
the generated image are expected to be similar. However, more loose controls like
semantic maps and human poses in particular do not contain precise positional
information about the features and hence the FID score only measures quality.
The same applies to the similarity metrics LPIPS which is less relevant for
guidance with semantic maps and not applicable to human pose guidance.

4.2 Ablation Study: Architecture

We conduct an ablation study in Tab. 1 for the four architectures shown in
Fig. 3. The size of our Type A-C are chosen to be about 20% of ControlNet.
For two metrics, quality (FID) and control (MSE-depth), all of our architectures
are clearly superior to ControlNet. For other metrics, our design is marginally
superior or on a par, respectively. Furthermore, Type B performs better than
Type A for all measures. This is not surprising, since Type A has no control-
signals in the encoder part (see Fig. 3b). The performance of Type B and C are
on a par. However, Type C has the drawback of effectively doubling the model
size. We explain this lack of quantitative improvement of Type C in a sensitivity
analysis in the supplement material. We choose type B as our final architecture
for ControlNet-XS and use it in all remaining experiments.

In the next experiment we evaluate whether changing the parameter size of
ControlNet-XS influences the performance, see Table 2. We examined ControlNet-
XS (i.e. Type B) with 491M, 55M, 11.7M and 1.7M parameters, respectively.
We roughly see the same trend for all metrics that when varying the sizes of
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Table 1: Ablation study for four different architectures illustrated in Fig. 3.
We see that all of our designs (Type A to Type C) outperform ControlNet [88] (CN),
both in terms of quality (FID) and control (MSE-depth). We select Type B as our
ControlNet-XS architecture for all remaining experiments, since it performs best, on
average, and has fewer parameters than Type C.

Both Control Quality
Method FID ↓ MSE-d ↓ LPIPS ↓ CLIP-Sc ↑ CLIP-Ae ↑

D
e
p
th

CN (361M) 19.01 29.1 0.532 28.96 6.08
Our Type A (53M) 17.11 20.9 0.492 29.00 6.02
Our Type B (55M) 16.36 19.6 0.468 29.21 6.09
Our Type C (117M) 16.24 20.2 0.476 29.14 6.10

Table 2: Ablation study of ControlNet-XS (Type B) in terms of size. On
average, we see that the performance increases slightly from 491M to 55M and decreases
afterwards for smaller model sizes, up to 1.7M. Please see discussion in Section 4.2.

Both Control Quality
Method FID ↓ MSE-d ↓ LPIPS ↓ CLIP-Sc ↑ CLIP-Ae ↑

Stable Diffusion 22.69 (69.7) (0.618) 28.40 6.16

D
e
p
th

CN-XS (491M) 16.91 21.4 0.487 29.09 6.07
CN-XS (55M) 16.36 19.6 0.468 29.21 6.09
CN-XS (11.7M) 17.90 28.6 0.525 28.83 6.10
CN-XS (1.7M) 18.45 29.9 0.526 28.73 6.12

ControlNet-XS, the performance increases slightly from 491M to 55M and de-
creases afterwards for smaller model sizes, up to 1.7M. Hence, we choose the 55M
model as our best model and show qualitative results in Fig. 1. In terms of con-
trol, it means that smaller models have reduced fidelity of the control. We show
qualitative results of this effect in Fig. 4. The general decrease in performance
for smaller model sizes can be explained as follows. Control models with fewer
parameters have less power and hence perform more similarly to the uncontrolled
generative model, i.e. Stable Diffusion, which performs worse in general. Note
that the CLIP-Aesthetic score is highest for Stable Diffusion. Hence, our 1.7M
model performs best for this score.

(a) Control (b) Original Image (c) CN-XS (55M) (d)CN-XS (11.7M) (e) CN-XS (1.7M)

Fig. 4: The fidelity of the control reduces with smaller model sizes of ControlNet-
XS. In the 55M parameter model the complex structure of the street junction is identical
to the one in the original image, as well as the skyscrapers in the upper-left corner.
Smaller models with 11.7M and 1.7M parameters, respectively, are still guided by the
control but less rigorously.

4.3 Quantitative Comparison

Tab. 3 compares our ControlNet-XS with six state-of-the-art control methods.
We only use the officially published weights to not bias the comparison. We
examined four different guidance types: pixel-accurate depth and canny-edge
guidance, more loose semantic map guidance, and very loose human pose guid-
ance. Among all competitors, Uni-ControlNet is on average the best performing
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Table 3: Quantitative comparison of seven different approaches. For each
guidance type the best method is marked bold and the two worst are marked in
red. The results for ControlNet [88] with a semantic map guidance are shown in grey
brackets since the authors state that the test images were part of the training set.

Quality + Control Control Quality
Method FID ↓ MSE-d ↓ LPIPS ↓ CLIP-Sc ↑ CLIP-Ae ↑ SD

Stable Diffusion 22.69 - (0.618) 28.40 6.16 v1.5

D
e
p
th

ControlNet (361M) 19.01 29.1 0.532 28.96 6.08 v1.5
GLIGEN (231M) 19.15 21.2 0.490 29.03 5.81 v1.4
T2I-Adapter[32] (77M) 20.29 31.4 0.526 28.80 5.98 v1.5
UniControl (374M) 26.80 19.9 0.487 28.04 5.97 v1.5

Cocktail (378M) / / / / / /
Uni-ControlNet (459M) 18.38 26.1 0.524 29.00 5.90 v1.5
ControlNet-XS (55M) 16.36 19.6 0.468 29.21 6.09 v1.5

HDD ↓

C
a
n
n
y

E
d
g
e
s ControlNet (361M) 21.18 18.52 0.544 29.01 6.17 v1.5

GLIGEN (231M) 27.24 15.09 0.446 29.20 5.76 v1.4
T2I-Adapter (77M) 18.34 16.66 0.459 29.14 5.66 v1.5
UniControl (374M) 33.12 16.02 0.416 28.13 5.79 v1.5

Cocktail (378M) / / / / / /
Uni-ControlNet (459M) 17.37 15.94 0.460 29.28 5.87 v1.5
ControlNet-XS (55M) 15.13 15.22 0.417 29.61 5.98 v1.5

mIoU ↑

S
e
m

a
n
ti

c
M

a
p ControlNet (361M)∗ (35.35) (0.32) (0.590) (30.22) (5.85) v1.5

GLIGEN (231M) 29.83 0.25 0.608 29.82 5.84 v1.4
T2I-Adapter (77M) 23.76 0.22 0.613 30.31 5.69 v1.4
UniControl (374M) 39.26 0.31 0.552 27.85 6.02 v1.5
Cocktail[19] (378M) 26.07 0.19 0.604 31.25 6.11 v2.1
Uni-ControlNet (459M) 22.26 0.25 0.588 31.16 5.88 v1.5
ControlNet-XS (55M) 17.70 0.31 0.519 31.26 5.95 v1.5

HDD ↓

H
u
m

-P
o
se

s

ControlNet (361M) 23.82 8.58 - 28.14 6.18 v1.5

GLIGEN (231M) / / - / / /
T2I-Adapter (77M) 23.16 8.81 - 28.21 6.05 v1.5
UniControl (374M) 54.63 8.53 - 24.72 5.87 v1.5
Cocktail[19] (378M) 26.44 9.87 - 28.28 6.15 v2.1
Uni-ControlNet (459M) 22.80 8.98 - 28.06 5.84 v1.5
ControlNet-XS (55M) 23.58 8.67 - 28.15 6.21 v1.5

method, since it rarely has negative outliers and scores mostly among the top
methods. For pixel-accurate depth guidance our ControlNet-XS outperforms all
other approaches for all metrics. This includes our baseline model ControlNet.
For pixel-accurate canny-edge guidance, ControlNet-XS is either the best or sec-
ond best performing. It is important to note that there is no clear runner-up
method. For instance GLIGEN, which is second best for the HDD score, per-
forms very poorly with respect to quality, e.g . FID score. In general, GLIGEN
and UniControl exhibit a trade-off between control (HDD/MSE-d, LPIPS) and
quality (FID score) since they are not able to consistently exert proper control
without diminishing image quality. For guidance with a semantic map, which is
a more loose control, ControlNet-XS clearly outperforms all competitors, apart
from the CLIP-Aesthetics score, where it ranks third. Especially noticeable is
the tremendous gain in FID. Runner-ups are Uni-ControlNet and UniControl,
although UniControl performs very poorly with respect to FID score. For the
most loose control, i.e. keypoint guidance for human poses, there is in general
not much control that has to be enforced by the controlling model. All compared
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models perform similarly in terms of HDD score and keep the FID score in the
vicinity of the score of the unguided base model. The two exceptions appear to
be UniControl and Cocktail, which show a major drop in performance for the
FID score. In general, the quantitative results for human poses have to be taken
with a large grain of salt, given considerably less training data.

Table 4: Comparison of inference and training times of our ControlNet-XS and
ControlNet [88], trained to control depth. Inference times are averaged over seven runs
and we evaluate for 50 DDIM steps with a batch size of 10. The training time is given
in NVIDIA A100 GPU hours.

Method Inference ↓ Training ↓

ControlNet (361M) 1min 11sec ∼ 500h (A100)
ControlNet-XS (55M) 38sec ∼ 200h (A100)

In summary, we see that our improved communication mechanism plays an
important role when it comes to pixel-accurate image guidance (depth and
canny-edges) as well as more loose guidance (semantic map). For very loose
guidance, such as human pose, the communication mechanism may play a less
important role. However, even then our approach performs well across all metrics
without any negative outlier. In general, only Uni-ControlNet and our approach
show the behaviour of no negative outliers, while all other approaches seem to
sometimes trade-off image quality for more accurate control.

Tab. 4 compares inference and training times of ControlNet-XS and Control-
Net. For both, we increase the speed by about a factor of 2.

Original ControlNet  ⍺ = 0.1 ControlNet  ⍺ = 0.4 ControlNet  ⍺ = 0.825

ControlNet-XS (11.7 Mio.)  ⍺ = 1.0 ControlNet-XS (55 Mio.)  ⍺ = 1.0Control

Fig. 5: Semantic bias for depth control. Given the control depth map of a street
scene and an unrelated text-prompt: “high quality photo of a delicious cake, 4k image”.
The large-sized (361M) ControlNet [88] has a semantic bias and is unable to produce
a cake scene with the given depth, independent of control strength α. Our small-sized
models with 11.7M and 55M respectively mitigate this bias.

4.4 Semantic Bias of Large Control Models

We have seen already that the large-sized ControlNet [88] needs generative power
to produce good results. However, this can induce a semantic bias as shown in
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Fig. 5. The images are generated with a control depth map of a street scene and
an unrelated text-prompt: “high quality photo of a delicious cake, 4k image”.
Note that these are not contradicting control inputs but the inputs rather chal-
lenge the generative process to produce a creative solution with a cake in form
of a street scene. We see that ControlNet-XS with 11.7M parameters is able to
produce impressive results, followed by results of the 55M model. In contrast,
ControlNet [88] is not able to produce satisfying results, even when adjusting
the control strength α.3 Note that α = 0.825 is the default for ControlNet.
With this default value, ControlNet shows proper house facade textures, while
ControlNet-XS shows typical cake textures such as “sponge”, “marzipan” or “ic-
ing”. We conjecture that the reason is a semantic bias induced by large control
models. A large control model can use its power to add semantic meaning to
input depth maps. This semantic bias cannot be removed by adapting α. Here
α = 0.4 was the “sweet spot” where ControlNet suddenly transitions from pro-
ducing images of a cake to images of a street scene. In the supplement, we show
that a large-sized ControlNet-XS also has this semantic bias.

4.5 Evaluation with Stable Diffusion XL

We evaluate our ControlNet-XS model with Stable Diffusion XL [53] as gener-
ative model. Stable Diffusion XL has about 2.6B parameters and hence is over
three times larger than its predecessor Stable Diffusion. We are able to train a
ControlNet-XS for depth control which has only 20M parameters, i.e. less than
1% of parameters of the generative model. Our model provides good control,
i.e. MSE-d score is 22.6 in contrast to 123.2 of the uncontrolled Stable Diffusion
XL. Furthermore, we achieve high quality results with a low FID score of 18.75.
ControlNet-XS is also considerably superior to the T2I-Adapter [47] with an FID
score of 61.03 and MSE-d score of 49. A qualitative result is shown in Fig. 1. We
refer to the supplement for more results and a discussion.

5 Conclusion and Limitation

We have analyzed existing approaches for controlling pre-trained text-to-image
Diffusion Models with respect to their communication mechanism with the gener-
ative model. We proposed a new bidirectional, high-frequency and large-bandwidth
communication. This led to the development of ControlNet-XS, a small-sized
controlling network that outperforms the state-of-the-art for pixel-level image
guidance. One major limitation in this field is a missing unifying benchmark with
consistent evaluation protocols and ideally a metric that truly represents human
judgment. There are many exciting directions for future work. One next step is
to integrate our approach into the multi-image guidance approaches, which are
based on a feedback-control system, but also approaches in related fields such
as video translation [15, 92] and controlled 3D object generation [29, 87] should
benefit from our method.

3 The output signals of the controlling network are added with a global weighting α

to the output signals of the generation network at the respective neural blocks. This
weighting can be adjusted at test time.
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