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Abstract. Quantifying a model’s predictive uncertainty is essential for
safety-critical applications such as autonomous driving. We consider quan-
tifying such uncertainty for multi-object detection. In particular, we
leverage conformal prediction to obtain uncertainty intervals with guar-
anteed coverage for object bounding boxes. One challenge in doing so
is that bounding box predictions are conditioned on the object’s class
label. Thus, we develop a novel two-step conformal approach that prop-
agates uncertainty in predicted class labels into the uncertainty intervals
of bounding boxes. This broadens the validity of our conformal coverage
guarantees to include incorrectly classified objects, thus offering more ac-
tionable safety assurances. Moreover, we investigate novel ensemble and
quantile regression formulations to ensure the bounding box intervals are
adaptive to object size, leading to a more balanced coverage. Validating
our two-step approach on real-world datasets for 2D bounding box local-
ization, we find that desired coverage levels are satisfied with practically
tight predictive uncertainty intervals.
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1 Introduction

Safety-critical applications in domains such as autonomous transportation [37,
69] and mobile robotics [36] benefit greatly from accurate estimates of the
model’s predictive uncertainty. Yet one obstacle to principled uncertainty quan-
tification (UQ) for computer vision is the pervasive use of deep neural networks,
which are often unamenable to traditional techniques for UQ. The framework
of Conformal Prediction (CP) [2, 54, 65] enables a form of distribution-free UQ
that is agnostic to the predictive model’s structure, rendering it well-suited for
such ‘black-box’ models.

In this work, we propose a CP framework designed to quantify predictive
uncertainties in multi-object detection tasks with multiple classes (see Fig. 2).
CP allows us to produce computationally cheap, post-hoc distribution-free pre-
diction intervals, which come equipped with a coverage guarantee for the true
? Correspondence to <a.r.timans@uva.nl>
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Fig. 1: Examples of our method for multiple classes on test images. True bounding
boxes are in red, two-sided prediction interval regions are shaded in green. Produced
uncertainty estimates come with a probabilistic coverage guarantee of the true boxes.

bounding boxes of previously unseen objects (of known classes). Specifically, we
provide users with the following safety assurance: “The conformal prediction in-
terval covers the object’s true bounding box with probability (1�↵) for any known
object class”, where ↵ is an acceptable margin of error. Such a guarantee can,
e.g ., in the context of autonomous driving, help certify collision avoidance by
steering clear of the outer interval bounds, or in the case of robot picking, enforce
cautious handling by demarcating a reliable grasping zone via the inner bounds.
We provide visual examples of our obtained intervals in Fig. 1 and § C.5.

Employing strategies based on ensembling and quantile regression, we ensure
that the obtained intervals are adaptive to object size: they may grow or shrink
in individual dimensions to account for object variability and prediction diffi-
culty. A challenge to the desired assurance is that constructed intervals rely on
the model’s predicted class labels, which may be erroneous. We thus introduce
an additional conformal step over the class labels, shielding against misclassifi-
cation and ensuring that downstream coverage is satisfied. That is, our two-step
conformal pipeline remains theoretically and empirically valid regardless of the
underlying object detector’s predictive performance for either class labels or box
coordinates – the incurred costs are solely reflected in the obtained prediction
interval sizes. In the experiments, we apply our methodology to multiple classes
on several real-world 2D object detection datasets. We obtain bounding box
prediction intervals that adhere to the desired guarantee, and are both adaptive
and practically useful for downstream decision-making.

To summarize, our core contribution is an end-to-end framework for safe
bounding box uncertainties which is post-hoc, efficient, and generalizable. In that
process, we introduce several original concepts such as (i) ensemble and quan-
tile CP adaptations for object detection, (ii) leveraging strong class-conditional
guarantees for multi-class settings, and (iii) proposing a sequential two-step ap-
proach that propagates classification uncertainties forward.
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Fig. 2: A diagram of our proposed two-step conformal approach. We compute confor-
mal quantiles for both class labels and box coordinates on calibration data following
the CP framework. These are used on the predictions of a ‘black-box’ object detec-
tor for a new test sample to (1) form a conformal label set with guarantee (3) which
informs our box quantile choice, and (2) form a conformal prediction interval for the
bounding box with guarantee (3), providing a reliable predictive uncertainty estimate.

2 Background

We begin by providing background on conformal prediction and the desired
coverage guarantees, and then relate our object detection setting to it.

2.1 Conformal prediction

We consider the most common setting of split CP [43], where we perform a
single split to obtain hold-out calibration data Dcal = {(Xi, Yi)}ni=1 ⇠ PXY ,
as opposed to alternative partitioning schemes [6, 64]. If the general conformal
procedure outlined in Algorithm 1 (deferred to § A.1) is followed, a coverage
guarantee for an unseen test sample (Xn+1, Yn+1) ⇠ PXY is provided in terms
of a prediction set Ĉ(Xn+1), where a finite-sample, distribution-free guarantee
is given over the event of Ĉ(Xn+1) containing Yn+1.

That is, assuming the samples Dcal [ {(Xn+1, Yn+1)} are exchangeable – a
relaxation of the i.i.d. assumption – we obtain a probabilistic guarantee that

P(Yn+1 2 Ĉ(Xn+1)) � 1� ↵ (1)

for some tolerated miscoverage rate ↵ 2 (0, 1) [54]. The provided guarantee is
marginally valid, since it holds on average across any sample (Xn+1, Yn+1) and
set Dcal drawn from some fixed distribution PXY over X ⇥Y. This is in contrast
to the ideal scenario of conditionally valid coverage per input Xn+1, which has
been shown to be impossible to achieve in a distribution-free manner [19, 63].
However, recent work on in-between notions of conditionality such as group-
[23, 49] and feature-conditional [53] strive towards more granular guarantees.

In particular, class-conditional validity can be achieved by applying CP sepa-
rately to samples from each class [11,52,55,65], yielding the following guarantee:

P(Yn+1 2 Ĉ(Xn+1)|Yn+1 = y) � 1� ↵ 8y 2 Y, (2)
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where Y = {1, . . . ,K} are distinct class labels. The class-conditional guarantee in
Eq. 2 is stronger and implies Eq. 1, in that we aim to control the miscoverage level
for samples within each class. It also permits setting individual miscoverage levels
{↵y}y2Y per class if desired, and is robust to imbalances in class proportions
[47,62]. Such a class-conditional guarantee is precisely what we aim to provide.

Classification and regression. Applying CP to a classification task yields
conformal label prediction sets ĈL(Xn+1) ✓ {1, . . . ,K} as finite subsets of
the K class labels, at a target miscoverage level ↵L. For regression, the sets
ĈB(Xn+1) ✓ R take the form of prediction intervals (PIs) on the target domain,
at a target miscoverage level ↵B . Naturally, we have both (↵L,↵B) 2 (0, 1)2.

2.2 Object detection

We next formalize our multi-object detection setting. Consider an input image
X 2 RH⇥W⇥D, where H, W and D correspond to image height, width and
depth. For each image in Dcal we also receive a set of tuples (c1, c2, c3, c4, l),
where (c1, c2, c3, c4) 2 R4 are the coordinates indicating an object’s bounding
box location in the image, and l 2 {1, . . . ,K} represents the object’s class label.

Each tuple parameterizes an object, with a total of O(X) true objects located
in the image. For image X we thus have objects {(c1, c2, c3, c4, l)j}O(X)

j=1 . Note
that the model predicts Ô(X) objects, and it is possible that O(X) 6= Ô(X).
We model every object as an individual sample for our CP procedures, i.e.,
the same input image X can produce multiple calibration samples of shape
(X, (c1, c2, c3, c4, l)j), where j = 1, . . . , O(X) denote the contained objects.

Object detection model. For our object detector f̂ , we define two separate
output heads. The probabilistic classification head is defined as the map f̂L :
X 7! (⇡̂1, . . . , ⇡̂K), where ⇡̂y is the model’s estimate of the true class probability
⇡y of some object in image X belonging to class y. The object’s class label is then
l = argmaxy2{1,...,K} ⇡̂y. The bounding box regression head, denoted as f̂B :
X 7! (ĉ1, ĉ2, ĉ3, ĉ4), maps to an object’s real-valued bounding box coordinates.

2.3 Conformal prediction for object detection

Given our multi-object detection setting, we consider a class-conditional CP
approach to be particularly meaningful. It is sensible to only leverage information
on detected objects of the same class, e.g ., class ‘car’, to construct PIs for new
objects of that class. In contrast, a general marginal approach will unintuitively
also employ information from unrelated classes, such as ‘person’ or ‘bicycle’.

We apply CP to the bounding boxes on a per-coordinate basis, previously
denoted (c1, c2, c3, c4). However, from now on let us consider the generalization
to an arbitrary amount of coordinates ck, k = 1, . . . ,m 3. If we consider the
class label l within each group of objects belonging to a common class as fixed
3 This easily permits extending our approach to higher-dimensional object parame-

terizations such as 3D bounding boxes.
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(since the same label is shared), the response of an individual sample (Xi, Yi)
can be interpreted as a realization of the m coordinates only, i.e., we define
Yi := (c1i , . . . , c

m
i ) 2 Rm. The desired guarantee in Eq. 2 is re-interpreted as

P
 

m\

k=1

⇣
ckn+1 2 Ĉk

B(Xn+1)
⌘
| ln+1 = y

!
� 1� ↵B 8y 2 Y, (3)

where components are indexed accordingly per specific coordinate dimension.
For example, Ĉk

B(Xn+1) is the k-th coordinate’s prediction interval of an object
of class y (its class label ln+1 matches y) located in image Xn+1. Applying CP
per coordinate gives rise to multiple testing issues, which we address in § 4.1.

Practical limitations. Naively applying class-conditional CP to the box
coordinates necessitates a correct class label prediction in order to satisfy valid-
ity. That is, for Eq. 3 to hold, a valid PI construction requires l̂n+1 = ln+1 for
any considered class y 2 Y. We alleviate this practically limiting dependence on
the model’s classification ability using a conformal set-based classifier in § 5 (see
also Fig. 2). However, we of course still rely on the model’s general detection
abilities: the provided guarantees only hold for true objects that are actually
detected (true positives) and do not account for undetected objects (false neg-
atives), as also noted by Andéol et al . [1, 15]. Finally, the assumption on data
exchangeability underlying CP requires PXY to remain fixed, albeit recent works
have explored CP under settings of mild or known distribution shifts [2, 18].

3 Related work

Many existing approaches for uncertainty in bounding box regression leverage
standard UQ techniques such as Bayesian inference [13,25,71], loss attenuation
[22,29,30], or practical approximations like Monte Carlo Dropout [21,39,45,74]
and Deep Ensembles [16, 40, 68]. These can require substantial modifications to
the model architecture or training procedure, and do not provide a guarantee or
statement of assurance about provided estimation quality. See Feng et al . [17]
for a recent survey. A complementary line of work investigates the calibration
of object detectors [27,42,46], which can benefit our approach by improving the
underlying ‘black-box’ probabilistic model.

Conformal approaches have recently gained traction for computer vision and
related tasks, with applications such as image classification [5, 51], geometric
pose estimation [73], or tracking and trajectory planning [34,35,41,58]. Yet, the
domain remains comparatively unexplored given current surveys [2,18]. Specific
attempts at principled UQ for bounding boxes include using the Probably Ap-
proximatly Correct (PAC) framework to produce guarantees by composition of
PAC sets at multiple modelling stages [32,44], or leveraging p-values and risk es-
timates obtained from concentration inequalities for related risk control [3,4,7].
Such works differ from our two-step conformal approach in several ways, such
as (i) considering different vision tasks and using different data modalities, (ii)
integrating CP into complex modelling pipelines that cease to be post-hoc and
model-agnostic, or (iii) employing methods not based on conformal prediction.
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Closest prior work. Conformal PIs for bounding boxes have been previously
considered by Andéol et al . [1, 15]. However, a crucial limitation in their ap-
proach is that bounding box uncertainty is considered and evaluated for a single
class and for correctly classified objects only. Thus only the simplest form of
our guarantee in Eq. 3 is provided, since the class label is known a priori and
therefore l̂n+1 = ln+1 trivially holds. This means that prevalent uncertainty in
the class label predictions (which we address in § 5) is entirely ignored, making
their approach unsuitable for settings with multiple interacting classes, such as
autonomous driving. We also introduce several methodological improvements,
such as (i) novel ensemble and quantile scoring functions for the bounding box
setting, (ii) more informative two-sided intervals, and (iii) a multiple testing cor-
rection that exploits correlation structure between box coordinates, as opposed
to more naive Bonferroni [15] or max-corrections [1].

4 Conformal methods for box coordinates

A key modelling decision in CP is the choice of scoring function s : X⇥Y ! R to
compute the required nonconformity scores (see § A.1). We consider three choices
of scoring function and PI construction for each box coordinate k 2 {1, . . . ,m},
which we outline next. Additional implementation details can be found in § B.

Standard conformal (Box-Std). We firstly consider the standard ap-
proach of employing regression residuals s(f̂B(X), Y ) = |ĉk � ck| as scores [54].
The resulting PIs are constructed as Ĉk

B(Xn+1) = [ĉkn+1� q̂kB , ĉkn+1+ q̂kB ], where
q̂kB denotes the computed conformal quantile for the k-th coordinate. While
straightforward, this construction only permits for non-adaptive, fixed-width in-
tervals. Andéol et al . [15] use this approach to construct their one-sided intervals.

Conformal ensemble (Box-Ens). In order to produce more adaptive inter-
vals, we next consider normalized residual scores [31] of the form s(f̂B(X), Y ) =
|ĉk�ck|/�̂(X), where �̂ is some form of heuristic uncertainty estimate (i.e., with-
out guarantees) obtained from the underlying model. The resulting conformal
PIs are constructed as Ĉk

B(Xn+1) = [ĉkn+1 � �̂(Xn+1) q̂kB , ĉkn+1 + �̂(Xn+1) q̂kB ].
By incorporating model uncertainty, the intervals can be re-scaled individually
per coordinate to adapt their magnitude at test time. We can interpret this as an
empirical conditioning on the particular test sample. We employ an ensemble of
object detectors and quantify �̂ as the standard deviation of the ensemble’s box
coordinate predictions [28]. A joint coordinate prediction ĉk is obtained from the
ensemble via confidence-weighted box fusion [56].

Conformal quantile regression (Box-CQR). As an alternative adap-
tive method, we extend the approach of Conformal Quantile Regression (CQR)
[50] to our setting. Additional regression heads Q̂B are trained with a quantile
loss alongside f̂B to produce lower and upper quantile predictions Q̂↵B/2 and
Q̂1�↵B/2 for the bounding box coordinates. Under regularity conditions, these
predictors will asymptotically converge to the true conditional quantiles [12,24],
motivating their viability. Following CQR, we define the scores as s(Q̂B(X), Y ) =
max{Q̂↵B/2(X) � ck, ck � Q̂1�↵B/2(X)}, and construct the conformal PIs as
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Ĉk
B(Xn+1) = [Q̂↵B/2(Xn+1)� q̂kB , Q̂1�↵B/2(Xn+1) + q̂kB ]. The obtained interval

ensures adaptivity through the use of its quantile predictions, which will differ
in their distance relative to the mean coordinate prediction ĉkn+1 per sample.

4.1 Multiple testing correction

Applying CP to each of the box coordinates k = 1, . . . ,m separately gives rise
to multiple testing issues, since the conformal procedure can be interpreted from
a hypothesis testing view as running m permutation tests on nonconformity in
parallel [55, 65]. This results in a guaranteed coverage of at most (1 �m · ↵B),
as opposed to the desired rate of (1� ↵B) (see § A.3 for further details).

The naive Bonferroni correction [67] offers a possible remedy, since choos-
ing ↵0

B = ↵B/m will satisfy target coverage. However, it is known to be overly
conservative under positive dependency of the individual hypothesis [66], a rea-
sonable assumption given that the coordinates parametrize an object’s bounding
box jointly. In fact, Bates et al . [8] assert that a set of conformal p-values exhibits
positive dependency structure a priori since they are jointly positive regression
dependent on a subset [9]. We leverage an alternate procedure by Timans et
al . [61], which exploits correlation structure among box coordinates for a less con-
servative correction. Their max-rank procedure adapts the Westfall & Young [70]
permutation correction to make it suitable for the setting of conformal prediction
(see § A.4). While the use of a max-correction has been previously considered for
CP [1, 11], max-rank operates in the more robust scale-invariant rank space. In
addition, it requires less compute than previously proposed copula-based testing
corrections [38,60].

5 Class label prediction sets

In practice, the object detector may incorrectly predict an object’s class la-
bel given our multi-class setting. This complicates a direct application of class-
conditional CP to an object’s bounding box at test time, since we need to cor-
rectly select the conformal quantiles q̂kB , k 2 {1, . . . ,m} to construct bounding
box intervals that satisfy Eq. 3. This limits intially provided safety assurances to
correctly classified objects only, i.e., those where l̂n+1 = ln+1 successfully match.

To alleviate this restrictive dependence on the model’s classification ability,
our modelling pipeline in Fig. 2 introduces an additional conformal step which
preceeds the bounding box construction. Specifically, we consider applying CP
to the model’s classifier head f̂L to first generate class label prediction sets
ĈL(Xn+1) with a guarantee on label containment. These are subsequently used
to select our box coordinate quantiles, ensuring the validity of our provided
guarantees in Eq. 3 is broadened to even include incorrectly classified objects.

We achieve this using another class-conditional CP approach on the class
labels with a strict label coverage guarantee of 99% (i.e., ↵L = 0.01). Thus, we
approximate the condition l̂n+1 = ln+1 by effectively ensuring ln+1 2 ĈL(Xn+1).
The resulting two-step sequential approach maintains validity regardless of the
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object detector’s classification or bounding box regression performance. The in-
curred costs are reflected in the obtained prediction set and interval sizes only.
Our experiments in § 6.3 demonstrate that even under these strong safety assur-
ances, our approach provides actionably tight PIs. We follow with a description
of the employed conformal label set method and related baselines.

5.1 Conformal class thresholding (ClassThr)

We propose using a class-conditional variant of the prediction set classifier intro-
duced by Sadinle et al . [52], based on a similar conformal procedure as for the
bounding boxes. Given our probabilistic classifier head f̂L, we define the scoring
function s(f̂L(X), y) = 1 � ⇡̂y(X) for every class y 2 Y to compute per-class
conformal quantiles q̂yL. The class label prediction set for a new object to classify
is then given by ĈL(Xn+1) = {y 2 Y : ⇡̂y(Xn+1) � 1 � q̂yL}. The detailed pro-
cedure is given in Algorithm 2, deferred to § A.2. Importantly, class-conditional
validity is ensured by comparing each class probability against its class-specific
threshold on set inclusion. The class-conditional guarantee stated in Eq. 2 can
now be provided similarly for the object detector’s classification task as

P(ln+1 2 ĈL(Xn+1) | ln+1 = y) � 1� ↵L 8y 2 Y. (4)

Impact on bounding box coverage guarantee. A class-conditional guaran-
tee is enforced for the label prediction sets (Eq. 4), since only imposing the weaker
marginal guarantee could invalidate the subsequent class-conditional box guar-
antee (Eq. 3). If for instance a class is systematically undercovered, we would fail
to retrieve the correct box quantiles for some of its associated objects, propagat-
ing the undercoverage down-stream. Our approach instead enforces guarantees
of equivalent strength. Observe that we perform two distinct conformal proce-
dures in sequence, rendering the coverage guarantees conditionally independent.
Thus the down-stream coverage effect for their two-step application is that

P
 
ln+1 2 ĈL(Xn+1) ^

m\

k=1

⇣
ckn+1 2 Ĉk

B(Xn+1)
⌘
| ln+1 = y

!

= P
⇣
ln+1 2 ĈL(Xn+1) | ln+1 = y

⌘
· P
 

m\

k=1

⇣
ckn+1 2 Ĉk

B(Xn+1)
⌘
| ln+1 = y

!

� (1� ↵L)(1� ↵B) 8y 2 Y.
(5)

That is, a preceeding label coverage guarantee of (1 � ↵L) will nominally only
assure subsequent box coverage of (1 � ↵L)(1 � ↵B). In our experiments we
approximate (1�↵L)(1�↵B) ⇡ (1�↵B) by setting ↵L = 0.01, thus alleviating
the down-stream coverage reduction4. Eq. 5 highlights that coverage trade-offs
between objectives are possible depending on application-specific requirements.
For example, a nominal box coverage of 90% can be achieved by choosing either
↵L = 0.05,↵B = 0.05 or ↵L = 0,↵B = 0.1.
4 As we observe in § 6.3, enforcing ↵L = 0 leads to empirically inefficient box intervals.
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Label set Box interval

Method Guarantee Size Guarantee Size

Top 7⇤ Single 7† Small
Naive 7⇤ Small 7† Small
ClassThr 3 Medium 3 Medium
Full 3 Large 3 Large

Table 1: Provided nominal coverage guarantees and expected empirical prediction
set/interval sizes for the considered label prediction set methods on the basis of both
correctly and incorrectly classified objects. ⇤Top and Naive provide a label guarantee
‘for free’ if (1 � ↵L) is below the classifier’s accuracy level for each class. †Top and
Naive provide a box guarantee for correctly classified objects only. Naive may also
satisfy both guarantees under practically unattainable perfect model calibration.

5.2 Bounding box quantile selection

The obtained label prediction sets are subsequently used to select a valid box
coordinate quantile for any interval construction following § 4. A natural quantile
selection strategy is q̂kB = max{q̂k,yB }y2ĈL(Xn+1)

8k 2 {1, . . . ,m}, where q̂k,yB is
the quantile of the k-th coordinate for class y. Using a max-operator on the label
set is a valid but conservative approach, since all labels in the set are regarded
as equally likely for every sample. Obtained box intervals thus tend to overcover,
which could perhaps be alleviated with a different strategy, resulting in narrower
PIs. Yet, we find even this straightforward selection to yield reasonably tight
results. A hypothesis testing motivation for its use can be found in § A.5.

5.3 Label set baselines

We compare obtained label predictions sets via conformal class thresholding
(ClassThr) to several reasonable alternatives, whose nominal guarantees and
expected empirical set sizes are outlined in Tab. 1, and which we detail next.

Top singleton set (Top). We return label prediction sets that only con-
sist of the highest probability class for every sample, i.e., ĈL(Xn+1) = {y⇤ :
⇡̂y⇤(Xn+1) = maxy2{1,...,K} ⇡̂y(Xn+1)}. This approach returns singleton sets, is
void of nominal guarantees, and its empirical coverage relies fully on the clas-
sifier’s accuracy. The distinction to our initial condition l̂n+1 = ln+1, which we
refer to as Oracle, is subtle: instead of ensuring correct quantile selection, we
permit the use of potentially wrong quantiles to construct the box intervals.

Density level set (Naive). Assuming a perfectly calibrated classifier such
that ⇡̂y(X) = ⇡y(X) 8y 2 Y, the optimal prediction set is provided by density
level sets. That is, we collect all labels sorted by descending ⇡̂y until we reach
probability mass (1 � ↵L). Under this assumption, prediction sets will also ap-
proach conditional coverage for any X 2 X [51,52]. While unattainable in practi-
cal settings where the classifier tends to be miscalibrated (i.e., ⇡̂y(X) 6= ⇡y(X)),
it can be considered a theoretically motivated extension of the Top baseline.
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Full domain set (Full). We consider taking the full set of possible class
labels per sample, thus ĈL(Xn+1) = Y and |ĈL(Xn+1)| = K. In combination
with our quantile selection strategy this approach guarantees label coverage con-
ditionally per sample, i.e., it ensures ↵L = 0. However, this comes at the cost of
overly inflated label sets whose size is expected to propagate to the box intervals.

We do not consider other popular conformal approaches for classification
such as APS [51] or RAPS [5] since they aim to empirically improve conditional
coverage under the requirements of a marginal guarantee – these advantages do
not extend to a class-conditional setting as ours.

6 Experiments

For our experiments we primarily rely on pre-trained object detectors from
detectron2 [72], based on a Faster R-CNN architecture and trained on COCO
[33]. We consider three datasets: COCO validation, Cityscapes [14] and BDD100k
[75], which contain 2D bounding box annotations and are split into appropriate
calibration and test sets. We run our two-step conformal procedure for a variety
of classes, but focus reported results on a coherent set of object classes which
exists across datasets: person, bicycle, motorcycle, car, bus and truck (see § B.3).

Since the images can contain multiple objects, we require a pairing mecha-
nism between true and predicted bounding boxes. Following prior work [1, 15]
we perform Hungarian matching [26] based on an intersection-over-union (IoU)
threshold of 0.5. Throughout, we set ↵L = 0.01,↵B = 0.1 for a target box
coverage of (1 � ↵L)(1 � ↵B) ⇡ 90%, and employ max-rank [61] for multiple
testing correction. Results are averaged across multiple trials of data splitting.
Additional results, including varying combinations of (↵L,↵B), are in § C 5.

6.1 Metrics

Our approaches are validated by assessing the key desiderata of CP via relevant
metrics described below, which jointly capture the desired notions of ‘reliable’
uncertainty [2]. We denote the test set of size nt as Dtest = {(Xj , Yj)}n+nt

j=n+1.
Validity. We assess if nominal coverage guarantees are satisfied by verifying

empirical coverage, which we define in generality as

Cov =
1

nt

n+ntX

j=n+1

[Yj 2 Ĉ(Xj)], (6)

where [·] is the indicator function, of form [lj 2 ĈL(Xj)] for label prediction
sets and [

Tm
k=1(c

k
j 2 Ĉk

B(Xj))] for box intervals. Note that Cov is a random
quantity parametrized by an empirical coverage distribution, and will deviate
from nominal coverage based on factors such as calibration set size |Dcal| [63].

5 Our code is publicly available at https://github.com/alextimans/conformal-od.

https://github.com/alextimans/conformal-od
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Fig. 3: Top: Empirical coverage levels marginally across all objects (All) and across
objects from selected classes for the three bounding box methods (§ 4) on the BDD100k
dataset. Target coverage is achieved both marginally and for individual classes. Bot-
tom: Coverage levels are stratified by object size (Small, Medium, Large), showing
that Box-CQR and in particular Box-Ens provide a more balanced empirical coverage
across sizes. However, this comes at the cost of slightly larger intervals, as seen when
comparing MPIW . We also visualize target coverage ( ) and the marginal coverage
distribution ( ). Displayed densities are results obtained over 1000 trials.

Adaptivity. To examine if target coverage is satisfied by an imbalance of over-
and undercoverage across objects, similarly to [5,51] we verify empirical coverage
by stratification, namely across object sizes. We follow the COCO challenge 6

and stratify across three sizes by bounding box surface area: small (CovS , area
 322), medium (CovM , area 2 (322, 962]) and large (CovL, area > 962).

Efficiency. Obtained conformal prediction sets and intervals are desired to
be as small as possible while still maintaining target coverage (i.e., remaining
valid). We define the mean set size for label prediction sets and mean prediction
interval width (MPIW ) for bounding box prediction intervals as

1

nt

n+ntX

j=n+1

|ĈL(Xj)| and
1

ntm

n+ntX

j=n+1

mX

k=1

|Ĉk
B(Xj)|. (7)

That is, mean set size denotes the average number of labels in the obtained sets,
while MPIW expresses the average interval width in terms of image pixels.

Predictive performance. We also follow standard practice and validate
model performance using object detection-specific metrics from the COCO chal-
lenge, in particular average precision across multiple IoU thresholds (see § C).

6.2 Comparison of bounding box methods

Empirical coverage levels stratified by class labels as well as object sizes for the
three proposed bounding box methods are displayed in Fig. 3 for BDD100k.
6 See https://cocodataset.org/#detection-eval.

https://cocodataset.org/#detection-eval
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Two-sided box intervals One-sided box intervals

Uncertainty method Object detector MPIW Cov MPIW Cov

DeepEns 5⇥ Faster R-CNN 12.31± 0.47 0.21± 0.01 74.15± 2.01 0.49± 0.01
GaussianYOLO YOLOv3 7.00± 0.14 0.08± 0.01 87.07± 4.25 0.35± 0.01

Andéol et al . (Best)

Faster R-CNN N/A 87.62± 1.79 0.91± 0.01
YOLOv3 N/A 107.93± 4.85 0.92± 0.02
DETR N/A 82.21± 1.64 0.90± 0.01
Sparse R-CNN N/A 79.35± 1.78 0.91± 0.01

Box-Std (Ours)

Faster R-CNN 55.47± 2.97 0.88± 0.02 85.42± 1.99 0.88± 0.02
YOLOv3 61.73± 3.66 0.88± 0.02 103.12± 3.95 0.88± 0.02
DETR 45.34± 3.33 0.88± 0.02 80.57± 1.78 0.88± 0.01
Sparse R-CNN 41.92± 2.16 0.89± 0.01 77.33± 1.72 0.89± 0.01

Table 2: We compare our simplest method Box-Std to Andéol et al .’s best results (see
§ B.5) across different object detectors (Faster R-CNN [72], YOLOv3 [48], DETR [10],
Sparse R-CNN [59]) as well as deep ensembles (DeepEns [28]) and GaussianYOLO [13],
two popular UQ approaches. The former satisfies coverage but is only designed for
one-sided intervals, while the latter can heavily undercover in practice (marked ).
Results are for COCO across classes and 100 trials, for target coverage (1�↵B) = 0.9.
The key difference between various object detectors are the obtained interval widths
(MPIW ), which relate to predictive performance and are smaller for better models.

We see that target coverage of 90% is satisfied even per class, validating the
class-conditional guarantees provided in Eq. 3. The visible coverage variations
are explained by the differences in available calibration samples per class (see
§ A.6 and Tab. 3). We further observe that the fixed-width intervals of Box-
Std may be large enough to cover small objects, but will fail to account for the
magnitude of large ones, resulting in significant undercoverage. In contrast, the
adaptive nature of Box-CQR and in particular Box-Ens via its scaling factor
can better account for varying magnitudes, achieving higher coverage for large
objects at a slight loss in efficiency due to a higher MPIW . Whilst coverage
across small objects reduces somewhat, it now intuitively aligns with observed
prediction difficulty (see Tab. 6). That is, objects which are more challenging
to predict exhibit a higher variation and chance of miscoverage. We note that
the improved coverage balance across object sizes is a purely empirical benefit of
our adaptive designs – the employed conformal procedures only aim to guarantee
target coverage per class and do not condition on object size.

Baseline comparisons. We further validate our conformal bounding box
step by comparing to Andéol et al . [1,15], modifying our own two-sided interval
methods to produce one-sided PIs, and evaluating efficiency via MPIW (see
§ B.5 for details and their box stretch metric). Tab. 2 demonstrates that we
achieve marginally tighter intervals even in their own, more restricted setting,
while remaining equally valid. We also evaluate generated uncertainties via deep
ensembles (DeepEns) [28] and GaussianYOLO [13], two popular UQ approaches
for object detection. Results confirm the unreliability of produced uncertainties
due to their lack of guarantees, as seen by severe undercoverage in both settings.
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Fig. 4: Every combination of conformal label set and bounding box method is eval-
uated along two axes for COCO (top row), Cityscapes (middle row) and BDD100k
(bottom row). On the vertical axis we display efficiency, i.e., mean set size for label
sets (left column) and MPIW for box intervals (right column). On the horizontal axis
we display empirical coverage levels. We also draw target coverage ( ) and marginal
coverage distributions ( ). In line with Tab. 1, approaches employing ClassThr or
Full consistently achieve both label and box target coverage, at the cost of larger pre-
diction sets/intervals. Results are averaged across classes and 100 trials.

Finally, a comparison of the max-rank correction to Bonferroni in § C.2 asserts
that substantially tighter PIs can be obtained with our employed correction.

6.3 Results for the two-step approach

After having benchmarked our bounding box step, we next compare the full
two-step approach by adding the preceeding conformal step for class labels via
ClassThr, and comparing to the proposed label set baselines in § 5.3. Each
method’s nominal guarantee and expected efficiency is displayed in Tab. 1.

In line with expectations, we observe in Fig. 4 that only approaches using
ClassThr or Full (the full label set) consistently achieve target coverage for both
class labels and box intervals across all three datasets. Notably, while Full re-
sults in overly inflated interval widths due to its construction, ClassThr provides
surprisingly efficient label sets (with mean set size  4) which propagate into
reasonably tight box intervals. Differences also exist in the efficiency of the three
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bounding box methods, with Box-Ens performing notably better on BDD100k.
Stratifying results by object (mis-)classification also confirms that wrongly clas-
sified objects tend to exhibit higher uncertainty (see Fig. 8). Oracle relies on
knowing the correct quantile and thus does not require generating a label set.
While it provides nominal guarantees assuming correct label prediction and em-
pirically satisfies them with high efficiency (i.e., small MPIW ), the condition
severely limits its practicality. Top consistently undercovers the true label, and
also tends towards undercovering boxes as sample sizes increase. Naive is able to
consistently maintain box coverage even though label coverage is violated, with
surprisingly tight PIs. However, additional experiments in § C.1 showcase its
sensitivity to model miscalibration, yielding it less robust than ClassThr. Yet, it
is interesting that methods such as Top and Naive perform quite well empirically,
even under void nominal guarantees.

Discussion and practitioner’s choice. We end by discussing the choices
in selecting a suitable conformal two-step approach a practitioner may want to
consider. In terms of label set methods, we suggest the following: if the model
classifier records a high accuracy and there exists a way to externally validate
predicted class labels, then Top may be a highly efficient choice. If the model is
strongly calibrated and only empirical assurances are sufficient, then Naive may
be a suitable selection. However, if strong safety assurances with both nominal
and empirical guarantees are desired, then ClassThr is the only safe choice. We
highlight that improvement potential remains: obtained PIs using ClassThr tend
to overcover, presumably due to our conservative quantile selection strategy. It
may be indeed possible to obtain the same set of safety assurances with higher
efficiency under a different strategy. For example, one may consider a weighted
quantile construction on the basis of the classifier’s confusion matrix.

Regarding the choice of bounding box method, we observe that Box-Std will
be the most efficient if the object detection task contains only similarly sized
objects. However, if objects vary substantially in size, an adaptive approach
such as Box-Ens or Box-CQR will be more suitable. One may also consider
designing a conformal approach which explicitly satisfies target coverage across
other reasonable strata beyond classes, such as object sizes or shapes. A limiting
factor to consider may be the size of available calibration data per partition.

7 Conclusion

We present a novel procedure to quantify predictive uncertainty for multi-object
detection. We leverage CP to generate uncertainty intervals with a per-class
coverage guarantee for new samples. Our proposed two-step conformal approach
provides adaptive bounding box intervals with safety assurances robust to object
misclassification. Addressing similar types of guarantees, the procedure can be
extended to 3D bounding boxes, object tracking and other detection tasks in
future work. Whilst improvements can be made to achieve even narrower inter-
vals, our results are promisingly tight, paving the way for a safer deployment of
vision-based systems in scenarios involving decision-making under uncertainty.



Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction 15

Acknowledgements

We thank members of the Bosch-UvA Delta Lab and anonymous reviewers for
helpful discussions and feedback. This project was generously supported by the
Bosch Center for Artificial Intelligence.

References

1. Andéol, L., Fel, T., De Grancey, F., Mossina, L.: Conformal prediction for trust-
worthy detection of railway signals. AI and Ethics (2024)

2. Angelopoulos, A.N., Bates, S.: Conformal prediction: A gentle introduction. Foun-
dations and Trends in Machine Learning (2023)

3. Angelopoulos, A.N., Bates, S., Candès, E.J., Jordan, M.I., Lei, L.: Learn then
Test: Calibrating Predictive Algorithms to Achieve Risk Control. arXiv Preprint
(arXiv:2110.01052) (2021)

4. Angelopoulos, A.N., Kohli, A.P., Bates, S., Jordan, M., Malik, J., Alshaabi, T.,
Upadhyayula, S., Romano, Y.: Image-to-Image Regression with Distribution-Free
Uncertainty Quantification and Applications in Imaging. International Conference
on Machine Learning (2022)

5. Angelopoulos, A.N., Bates, S., Jordan, M., Malik, J.: Uncertainty sets for image
classifiers using conformal prediction. International Conference on Learning Rep-
resentations (2020)

6. Barber, R.F., Candès, E.J., Ramdas, A., Tibshirani, R.J.: Predictive inference with
the jackknife+. The Annals of Statistics (2021)

7. Bates, S., Angelopoulos, A., Lei, L., Malik, J., Jordan, M.: Distribution-free, risk-
controlling prediction sets. Journal of the ACM (JACM) (2021)

8. Bates, S., Candès, E., Lei, L., Romano, Y., Sesia, M.: Testing for outliers with
conformal p-values. The Annals of Statistics (2023)

9. Benjamini, Y., Yekutieli, D.: The Control of the False Discovery Rate in Multiple
Testing under Dependency. The Annals of Statistics (2001)

10. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.:
End-to-end object detection with transformers. European Conference on Computer
Vision (2020)

11. Cauchois, M., Gupta, S., Duchi, J.C.: Knowing what You Know: Valid and vali-
dated confidence sets in multiclass and multilabel prediction. Journal of Machine
Learning Research (2021)

12. Chaudhuri, P.: Global nonparametric estimation of conditional quantile functions
and their derivatives. Journal of Multivariate Analysis (1991)

13. Choi, J., Chun, D., Kim, H., Lee, H.J.: Gaussian Yolov3: An accurate and fast ob-
ject detector using localization uncertainty for autonomous driving. International
Conference on Computer Vision (2019)

14. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. Conference on Computer Vision and Pattern Recognition (2016)

15. de Grancey, F., Adam, J.L., Alecu, L., Gerchinovitz, S., Mamalet, F., Vigouroux,
D.: Object Detection with Probabilistic Guarantees: A Conformal Prediction Ap-
proach. Computer Safety, Reliability, and Security (SAFECOMP) Workshops
(2022)



16 A. Timans et al.

16. Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F.,
Wiesbeck, W., Dietmayer, K.: Deep multi-modal object detection and semantic
segmentation for autonomous driving: Datasets, methods, and challenges. IEEE
Transactions on Intelligent Transportation Systems (2020)

17. Feng, D., Harakeh, A., Waslander, S.L., Dietmayer, K.: A review and comparative
study on probabilistic object detection in autonomous driving. IEEE Transactions
on Intelligent Transportation Systems (2021)

18. Fontana, M., Zeni, G., Vantini, S.: Conformal prediction: a unified review of theory
and new challenges. Bernoulli (2023)

19. Foygel Barber, R., Candès, E.J., Ramdas, A., Tibshirani, R.J.: The limits of
distribution-free conditional predictive inference. Information and Inference: A
Journal of the IMA (2020)

20. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.: On calibration of modern neural
networks. International Conference on Machine Learning (2017)

21. Harakeh, A., Smart, M., Waslander, S.L.: Bayesod: A bayesian approach for un-
certainty estimation in deep object detectors. IEEE International Conference on
Robotics and Automation (2020)

22. He, Y., Zhu, C., Wang, J., Savvides, M., Zhang, X.: Bounding box regression with
uncertainty for accurate object detection. Conference on Computer Vision and
Pattern Recognition (2019)

23. Jung, C., Noarov, G., Ramalingam, R., Roth, A.: Batch Multivalid Conformal
Prediction. International Conference on Learning Representations (2023)

24. Koenker, R., Bassett, G.: Regression Quantiles. Econometrica (1978)
25. Kraus, F., Dietmayer, K.: Uncertainty estimation in one-stage object detection.

IEEE Intelligent Transportation Systems Conference (2019)
26. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research

Logistics Quarterly (1955)
27. Kuppers, F., Kronenberger, J., Shantia, A., Haselhoff, A.: Multivariate confidence

calibration for object detection. Conference on Computer Vision and Pattern
Recognition Workshops (2020)

28. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in Neural Information Pro-
cessing Systems (2017)

29. Le, M.T., Diehl, F., Brunner, T., Knoll, A.: Uncertainty estimation for deep neural
object detectors in safety-critical applications. IEEE International Conference on
Intelligent Transportation Systems (2018)

30. Lee, Y., Hwang, J.w., Kim, H.I., Yun, K., Kwon, Y., Bae, Y., Hwang, S.J.: Localiza-
tion uncertainty estimation for anchor-free object detection. European Conference
on Computer Vision (2022)

31. Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R.J., Wasserman, L.: Distribution-Free
Predictive Inference for Regression. Journal of the American Statistical Association
(2018)

32. Li, S., Park, S., Ji, X., Lee, I., Bastani, O.: Towards PAC Multi-Object Detection
and Tracking. arXiv Preprint (arXiv:2204.07482) (2022)

33. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common objects in context. European Conference
on Computer Vision (2014)

34. Lindemann, L., Cleaveland, M., Shim, G., Pappas, G.J.: Safe planning in dynamic
environments using conformal prediction. IEEE Robotics and Automation Letters
(2023)



Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction 17

35. Luo, R., Zhao, S., Kuck, J., Ivanovic, B., Savarese, S., Schmerling, E., Pavone,
M.: Sample-efficient safety assurances using conformal prediction. International
Workshop on the Algorithmic Foundations of Robotics (2022)

36. Lütjens, B., Everett, M., How, J.P.: Safe reinforcement learning with model uncer-
tainty estimates. International Conference on Robotics and Automation (2019)

37. McAllister, R., Gal, Y., Kendall, A., Van Der Wilk, M., Shah, A., Cipolla,
R., Weller, A.: Concrete problems for autonomous vehicle safety: Advantages of
bayesian deep learning. International Joint Conference on Artificial Intelligence
(2017)

38. Messoudi, S., Destercke, S., Rousseau, S.: Copula-based conformal prediction for
multi-target regression. Pattern Recognition (2021)

39. Miller, D., Dayoub, F., Milford, M., Sünderhauf, N.: Evaluating merging strate-
gies for sampling-based uncertainty techniques in object detection. International
Conference on Robotics and Automation (2019)

40. Miller, D., Sünderhauf, N., Zhang, H., Hall, D., Dayoub, F.: Benchmarking
sampling-based probabilistic object detectors. Conference on Computer Vision and
Pattern Recognition Workshops (2019)

41. Muthali, A., Shen, H., Deglurkar, S., Lim, M.H., Roelofs, R., Faust, A., Tomlin, C.:
Multi-agent reachability calibration with conformal prediction. IEEE Conference
on Decision and Control (2023)

42. Neumann, L., Zisserman, A., Vedaldi, A.: Relaxed softmax: Efficient confidence
auto-calibration for safe pedestrian detection. NeurIPS Workshop on Machine
Learning for Intelligent Transportation Systems (2018)

43. Papadopoulos, H., Vovk, V., Gammerman, A.: Conformal Prediction with Neural
Networks. 19th IEEE International Conference on Tools with Artificial Intelligence
(2007)

44. Park, S., Bastani, O., Matni, N., Lee, I.: Pac confidence sets for deep neural net-
works via calibrated prediction. International Conference on Learning Representa-
tions (2020)

45. Peng, L., Wang, H., Li, J.: Uncertainty evaluation of object detection algorithms
for autonomous vehicles. Automotive Innovation (2021)

46. Phan, B., Salay, R., Czarnecki, K., Abdelzad, V., Denouden, T., Vernekar, S.: Cal-
ibrating uncertainties in object localization task. NeurIPS Workshop on Bayesian
Deep Learning (2018)

47. Podkopaev, A., Ramdas, A.: Distribution-free uncertainty quantification for clas-
sification under label shift. Uncertainty in Artificial Intelligence (2021)

48. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv Preprint
(arXiv:1804.02767) (2018)

49. Romano, Y., Barber, R.F., Sabatti, C., Candès, E.J.: With Malice Towards None:
Assessing Uncertainty via Equalized Coverage. Harvard Data Science Review
(2020)

50. Romano, Y., Patterson, E., Candes, E.: Conformalized Quantile Regression. Ad-
vances in Neural Information Processing Systems (2019)

51. Romano, Y., Sesia, M., Candes, E.: Classification with Valid and Adaptive Cover-
age. Advances in Neural Information Processing Systems (2020)

52. Sadinle, M., Lei, J., Wasserman, L.: Least Ambiguous Set-Valued Classifiers With
Bounded Error Levels. Journal of the American Statistical Association (2019)

53. Sesia, M., Romano, Y.: Conformal Prediction using Conditional Histograms. Ad-
vances in Neural Information Processing Systems (2021)

54. Shafer, G., Vovk, V.: A Tutorial on Conformal Prediction. Journal of Machine
Learning Research (2008)



18 A. Timans et al.

55. Shi, F., Ong, C.S., Leckie, C.: Applications of class-conditional conformal predictor
in multi-class classification. International Conference on Machine Learning and
Applications (2013)

56. Solovyev, R., Wang, W., Gabruseva, T.: Weighted boxes fusion: Ensembling boxes
from different object detection models. Image and Vision Computing (2021)

57. Steinwart, I., Christmann, A.: Estimating conditional quantiles with the help of
the pinball loss. Bernoulli (2011)

58. Su, S., Han, S., Li, Y., Zhang, Z., Feng, C., Ding, C., Miao, F.: Collaborative
multi-object tracking with conformal uncertainty propagation. IEEE Robotics and
Automation Letters (2024)

59. Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L.,
Yuan, Z., Wang, C., et al.: Sparse R-CNN: End-to-end object detection with learn-
able proposals. Conference on Computer Vision and Pattern Recognition (2021)

60. Sun, S.H., Yu, R.: Copula conformal prediction for multi-step time series prediction.
International Conference on Learning Representations (2023)

61. Timans, A., Straehle, C.N., Sakmann, K., Nalisnick, E.: A powerful rank-
based correction to multiple testing under positive dependency. arXiv Preprint
(arXiv:2311.10900) (2023)

62. Toccaceli, P., Gammerman, A.: Combination of inductive mondrian conformal pre-
dictors. Machine Learning (2019)

63. Vovk, V.: Conditional Validity of Inductive Conformal Predictors. Proceedings of
the Asian Conference on Machine Learning (2012)

64. Vovk, V.: Cross-conformal predictors. The Annals of Mathematics and Artificial
Intelligence (2015)

65. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World.
Springer (2005)

66. Vovk, V., Wang, B., Wang, R.: Admissible ways of merging p-values under arbitrary
dependence. The Annals of Statistics (2022)

67. Vovk, V., Wang, R.: Combining p-values via averaging. Biometrika (2020)
68. Wang, Z., Li, Y., Guo, Y., Fang, L., Wang, S.: Data-uncertainty guided multi-phase

learning for semi-supervised object detection. Conference on Computer Vision and
Pattern Recognition (2021)

69. Watkins, L., Hamilton, D., Young, T.A., Zanlongo, S., Whitcomb, L.L., Spielvo-
gel, A.R., Kobzik-Juul, B.: The roles of autonomy and assurance in the future of
uncrewed aircraft systems in low-altitude airspace operations. Computer (2023)

70. Westfall, P.H., Young, S.S.: Resampling-based multiple testing: Examples and
methods for p-value adjustment. John Wiley & Sons (1993)

71. Wirges, S., Reith-Braun, M., Lauer, M., Stiller, C.: Capturing object detection
uncertainty in multi-layer grid maps. IEEE Intelligent Vehicles Symposium (IV)
(2019)

72. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://

github.com/facebookresearch/detectron2 (2019)
73. Yang, H., Pavone, M.: Object pose estimation with statistical guarantees: Con-

formal keypoint detection and geometric uncertainty propagation. Conference on
Computer Vision and Pattern Recognition (2023)

74. Yelleni, S.H., Kumari, D., Srijith, P., et al.: Monte carlo dropblock for modeling
uncertainty in object detection. Pattern Recognition (2024)

75. Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., Dar-
rell, T.: Bdd100k: A diverse driving dataset for heterogeneous multitask learning.
Conference on Computer Vision and Pattern Recognition (2020)

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction

