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Text-driven talking avatar

A Female with a Pixie Cut
Wearing Blue Clothing says “In
a small village, a magical talking
rose could fulfil wishes.”

…

…

…

…

A Male with Afro Hair Wearing
Black Clothing says“In a
magical forest, a tree with golden
apples granted fruit only to the…”

A Male with Quiff Hair Wearing
White Clothing says “Images of
distressed polar bears clinging to
ice floes or in far-flung Arctic…”

Harry Potter Wearing Brown
Clothing says “England captain
Harry Kane continued his
impressive goalscoring form…”

Avatar says “Text content.”

Fig. 1: Given a text description and text content, our model generates high-quality 3D
facial avatars following the description and creates a high-fidelity video of the avatar
speaking out the content.

Abstract. This paper introduces text-driven talking avatar generation,
a task that uses text to instruct both the generation and animation of an
avatar. One significant obstacle in this task is the absence of paired text
and talking avatar data for model training, limiting data-driven method-
ologies. To this end, we present a zero-shot approach that adapts an ex-
isting 3D-aware image generation model, trained on a large-scale image
dataset for high-quality avatar creation, to align with textual instruc-
tions and be animated to produce talking avatars, eliminating the need
for paired text and talking avatar data. Our approach’s core lies in the
seamless integration of a 3D-aware image generation model (i.e., EG3D),
the explicit 3DMM model, and a newly developed self-supervised inpaint-
ing technique, to create and animate the avatar and generate a temporal
consistent talking video. Thorough evaluations demonstrate the effec-
tiveness of our proposed approach in generating realistic avatars based
on textual descriptions and empowering avatars to express user-specified
text. Notably, our approach is highly controllable and can generate rich
expressions and head poses.
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1 Introduction

Controllable generation and animation of lifelike 3D facial avatars are crucial in
various applications, such as digital human creation, video dubbing, and user-
generated content (UGC) video creation. In this work, we explore a new task
of text-guided talking avatar generation (see Figure 1): given a text description
of the avatar and also the text to speak out, the task aims to create a talking
avatar with appearance following the description and speaking the user-specified
content. By this means, we can assist users in readily generating a desired avatar
and letting it speak naturally, enabling diverse applications.

However, it remains challenging to create such talking avatars from pure texts
based on existing methods. One major challenge is the absence of large-scale
paired text and talking avatar data, which requires extensive crowd-sourcing
and annotation. Fortunately, compared to paired text and video datasets, the
image-level face datasets are easy to scale up (e.g., FFHQ [24]) and have facili-
tated the development of a wide array of research works [5,9,19,22,35,41,64,66],
significantly advancing the area of photorealistic avatar creation. While the com-
bination of text-to-2D image and 2D image animation method seems feasible,
2D image-based approaches often struggle with view inconsistency, especially for
large head poses, due to limited 3D information. In contrast, EG3D [4] can syn-
thesize high-quality avatars with rich details and 3D controllability. The above
motivates us to enquire whether we can leverage such pre-trained 3D-aware im-
age generation models for text-guided talking avatar generation.

In this work, we introduce a zero-shot approach to adapt a pre-trained 3D-
aware avatar generation model (i.e. EG3D) for text-guided talking avatar gener-
ation, eliminating the need for paired text and video data for training. Our ap-
proach seamlessly integrates EG3D for pose-controllable high-fidelity appearance
generation, CLIP to align text and rendered images for text-driven generation,
and 3DMM for text-driven vivid expression generation in a talking video.

To be more specific, first, given a text description of the avatar, a high-
fidelity static 3D-aware avatar is generated by optimizing a learnable code in
the latent space of EG3D. This is achieved by minimizing the CLIP distance
between the textual description and the rendered image in the front view. Next,
we estimate a sequence of expressions that match the text content to speak
out. With the expressions, we exploit the explicit parametric 3D representation,
3DMM, to animate the generated avatar with the desired facial expressions in
3D. This allows us to compute a 3D motion flow from the generated avatar to
the desired avatar, which is then projected to 2D for warping the latent features
to the target frame. To enhance avatar realism and mitigate warping artifacts,
especially in dynamic facial areas, we introduce InpaintNet, which is trained in
a self-supervised manner with self-reconstruction and consistency objectives to
rectify the latent features and ensure temporal consistencies. Finally, with the
refined latent features, the EG3D decoder yields high-quality video results with
its high generative capabilities.

Through comprehensive evaluations, we showcase that our model can cre-
ate high-quality talking avatars with facial details, rich facial expressions, nat-
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Methods Text-. Generation Audio/Exp-. Animation Text-. Animation Train Time Train Data

EG3D [4] # # # 8.5d, 8 V100 70k images

AnyFace [44] ! # # - 30k text-image

RODIN [50] ! # # - 100k images

OTAvatar [30] # ! # <2d, 4 A100 17k images

SADTalker [60] # ! # N/A, 8 A100 100k videos

Ours ! ! ! <5h, 2 3090 No

Table 1: Comparisons with existing works in other related tasks. Notably, the training
time and training data employed for these models are sourced from published works.

ural movement, and good consistency with the user-specified text input in a
self-supervised manner without any additional data, which cannot be readily
achieved by any existing works as far as we know.

In summary, our primary contributions are:

1) We study a novel text-guided talking avatar generation task, which uses text
to instruct both the generation and animation of a talking avatar.

2) We introduce a zero-shot approach for adapting a 3D-aware facial image
generation model to this task without the need for paired training data. Our
method is centered around the seamless integration of three components:
EG3D for high-quality avatar generation, the CLIP model for aligning text
and visual outputs, and the 3DMM model for animating the avatar with a
wide range of expressions, ensuring precise expression generation and con-
trol.

3) We propose InpaintNet, a self-supervised learning model that utilizes con-
sistency and reconstruction objectives to generate coherent talking videos
effectively.

4) Comprehensive experiments demonstrate the effectiveness of our model in
creating high-quality talking avatars according to text, which cannot be read-
ily achieved by any existing works to the best of our knowledge.

2 Related Work

Since there is no existing work that can be readily applied to our task as far
as we know, we compare our approach with SOTA methods in other related
tasks, including 3D avatar generation and talking head video generation. Table
1 summarizes the representative-related works, and the details are given below.
In summary, our method can work on a wider range of tasks compared to existing
works without manually collecting the training data.

Avatar Generation and Animation A series of existing approaches [5, 19, 35, 41,
64, 66] attempt to create avatars leverage GANs [8, 18] and diffusion models [9,
22]. For instance, EG3D [4] can synthesize rich details and control the head
pose; yet, it lacks animation capability such as expression control. To enable the
avatar animation, existing works [2,13,15,16,34,39,48,56] leverage 3D Morphable
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Fig. 2: (a) The overall framework of our approach. Leveraging the pre-trained EG3D
model, we optimize a latent code ws and create a 3D avatar satisfying the given text
description T1. A front-view image is subsquently rendered to derive the corresponding
3DMM model Gs with identity coefficient αi,s and expression coefficient αe,s. For
animation, we drive Gs with the expression parameters αe,d extracted from the input
text T2. The 3D motion flow (Fs→d) between Gd and Gs is projected to the image
plane (Fs→d) for the warping of rendered feature fs, which is further enhanced with the
InpaintNet and decoded to the output frame sequence. (b)(c) The training objectives
of InpaintNet. To mitigate the warping artifacts, a double-warping strategy (using
Fs→d and Fd→s) is performed for the self-reconstruction loss. To enhance temporal
consistency across frames and consistency between decoded and rendered images, Sync
loss and CLIP loss are involved.

Models (3DMM) to offer robust control on expressions. However, these models
typically cannot capture fine-grained facial details like EG3D [4]. In this work,
we integrate the advantages of EG3D and 3DMM to create a high-quality facial
appearance using EG3D and enable expression control with 3DMM for talking
avatar generation.

Audio-driven Talking Head Video Generation Audio-driven talking avatar gener-
ation, aimed at talking avatar videos from audio, can be roughly divided into two
primary categories: speaker-specific and speaker-independent methods. Early
speaker-specific approaches typically require a long video of the target avatar
for model training [25, 45], while recent ones leverage NeRF [1, 12, 32, 53] or
3D geometry and correspondence information [17, 26, 33, 46, 47, 55, 63] to build
avatar-specific 3D models [20,27,28,40,54,57] to reduce the reliance on the train-
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ing data. Speaker-independent methods [5, 6, 35, 64, 66] predominantly leverage
GANs. Besides, some recent works develop other techniques including targeted
facial region refinement [38], lip-sync technique [35], head pose integration [65],
and leverage 2D facial landmarks and expression parameters [5, 10,43,49,66] to
improve the animation realism.

Video-driven Talking Head Video Geneation Video-driven talking avatar gen-
eration aims to transfer the facial motion from a source avatar to a target
one. Various approaches have been proposed in this area, including landmark-
based [23, 42, 51, 52, 62], 3D Morphable Model (3DMM) based [14, 37, 58], and
latent animation approaches [31]. Recently, Ren et al. [37] further improves mo-
tion representation for enhanced facial reanimation, and Doukas et al. [14] en-
hances the model accuracy via 3DMM mesh fitting. Besides, Yin et al. [58] adopt
StyleGAN for feature map manipulation. These approaches further improve the
performance of the video-driven talking avatar generation. However, both audio-
and video-based approaches require a data collection process, which can be te-
dious and laborious. In response to this limitation, our approach eliminates the
need for data collection and allows users to leverage a piece of text to create a
talking video, providing more convenient and adaptable interaction options.

3 Our Method

In this work, we study a new task for text-guided talking avatar generation.
This task aims to produce a video sequence of an avatar that corresponds to a
textual description T1 while speaking out the content provided in another text,
designated as T2. To this end, we propose a zero-shot method that adapts a
pre-trained 3D-aware facial avatar generation model to produce a text-driven
talking avatar, eliminating the need for paired training data. As illustrated in
Figure 2, our framework consists of three modules. (i) text-guided 3D avatar
generation (Section 3.1). To do this, we optimize the avatar latent code ws in
the pre-trained EG3D latent space to create a 3D avatar whose 3DMM model is
represented as Gs = {αi,s,αe,s,αp} (αi,s: identity coefficient; αe,s: expression
coefficient; and αp: head pose). Thanks to the 3D awareness of EG3D latent
space, αp can be an arbitrary head pose. To make it consistent with the text
description T1, we encourage rendered output image Is to align with T1 by using
CLIP consistency regularization. (ii) text-guided avatar animation in 3D (Section
3.2). We leverage the explicit 3D representation of 3DMM for animation in 3D.
Specifically, given Gs and a desired expression αe,d from text T2 and head pose
αp,d, we obtain the 3DMM of the animated avatar Gd = {αi,s,αe,d,αp,d} with
expression aligned with the content of T2. Note that we can easily obtain the
source avatar G′

s = {αi,s,αe,s,αp,d} at the target head pose αp,d. Then, given
G′

s and Gd, we are able to compute the 3D motion flow Fs→d that maps the
surface points from the source G′

s to its corresponding location at target Gd.
This 3D motion flow is further projected onto a 2D motion flow Fs→d within
the image plane. (iii) high fidelity talking avatar video frame generation in 2D
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(Section 3.3). We maintain the identity and intricate details of the source avatar
while creating a high-quality talking video. This is achieved by animating the
source avatar to exhibit the desired expressions through warping its latent feature
map fs of EG3D in accordance to the motion flow Fs→d to produce fw and then
leveraging the decoder of EG3D to synthesize a high-quality talking video. To
alleviate the warping artifacts in fw, we incorporate an InpaintNet to generate
a complete feature map fo for further decoding with EG3D decoder to produce
high-quality results.

3.1 Text-Guided 3D-aware Avatar Generation

Given a text description T1, we aim to create a 3D-aware facial avatar with
3DMM representation Gs = {αi,s,αe,s,αp} following it. As shown in Figure 2
(a), we leverage a pre-trained avatar generator EG3D for high-fidelity avatar
generation and derive a latent code ws in its latent space Ω which can further
generate an output image Is with the EG3D decoder that is consistent with T1.

Specifically, to generate a high-fidelity 3D facial avatar, we leverage the pre-
trained EG3D 3D-aware avatar generator, which generates a latent triplane
representation with three mutually perpendicular feature planes {f0, f1, f2}.
Then, we query the corresponding features of point p from each feature plane as
{f0

p , f
1
p , f

2
p} and concatenate them to be a feature vector fp = {f0

p ⊕ f1
p ⊕ f2

p}.
With the feature fp, we adopt an MLP to predict the occupancy σp and color cp
of the point p. This representation can be used to effectively render a 2D image
by grid-sampling to form a feature map f ∈ RH/r×W/r×C from a camera pose
and then decode it to an image Is ∈ RH×W×3 using the pre-trained decoder,
where r indicates the downsampling rate in EG3D and C means the sum of
feature dimensions of the three feature planes {f0

p , f
1
p , f

2
p}.

Then, we leverage the feature spaces of the pre-trained vision-language model
CLIP [36] to connect the avatar generated by EG3D [4] and the given text de-
scription without needing paired data. We optimize the latent code ws in EG3D
by encouraging the CLIP feature f I

s of rendered images Is from the triplane rep-
resentation produced by ws to be consistent with the CLIP text feature fT1 of
the input text T1, such that the generated 3D avatar can follow the description
of T1. The objective function in the optimization process is then formulated as
Equation (1).

Lclip = ∥f I
s − fT1∥2. (1)

With ws available, we can render image Is at any given pose αp, allowing
us to estimate the 3DMM parameters and obtain Gs. Figure 5 illustrates several
visualization results of our text-guided avatar generation, demonstrating that
our method can create high-fidelity 3D avatars that are consistent with the text
inputs.
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3.2 Text-guided Avatar Animation in 3D

With the high-quality 3D-aware avatar Gs, we further aim to drive the avatar to
speak out the user-provided text content T2 by controlling its 3DMM coefficients.
As shown in Figure 2 (b), to drive the avatar in accordance with the input
context text T2, we utilize a publicly available text-to-speech tool to convert
input text descriptions into audio. Afterward, a pre-trained audio-to-expression
model [60] is further employed to generate the corresponding 3DMM coefficients
for expression αe,d and head pose αp,d, which are further utilized to drive the
avatar to speak out T2.

b) 3DMM coefficient-driven imagea) Ground truth image

Fig. 3: Facial image generated by
3DMM coefficients. It fails in the de-
tailed and complete generation.

An intuitive approach is to naively cre-
ate a video sequence using the derived
3DMM coefficient sets. However, the gen-
erative fidelity of this simple baseline is
far from satisfactory due to the limited
capability of 3DMM for hair region rep-
resentation, identity preservation, and fa-
cial detail generation (see Figure 3). To
this end, we propose a warping-based ani-
mation approach to drive the high-quality
source avatar Gs to make the desired ex-
pression under the control of 3DMM co-
efficients in 3D, which is further mapped into 2D and leverage the decoder of
EG3D for generating high-quality results. This design helps to preserve the iden-
tity and facial details of the source avatar Gs while taking advantage of the
pre-trained EG3D model, producing high-quality talking videos. Specifically, we
create the 3D meshes Gs, Gd using the source and driving 3DMM expression
coefficients αe,s and αe,d, respectively. Note that Gs, Gd are created using the
shared identity coefficient αi,s that was utilized to create the source 3D avatar
Gs in order to preserve the identity of the source avatar Gs. Also, they share the
same pose coefficient αp,d for better alignment. Then, we derive the 3D motion
flow Fs→d(p) of each query surface point p from Gs to Gd so that we can drive
the source avatar to make the target expression through warping, as shown in
Equation (2).

Fs→d(p) = T (Gd, p)− p, (2)

where T (·, ·) denotes the operation that finds the 3D coordinates of p’s corre-
sponding point in Gd.

However, the meshes created by 3DMM do not include some crucial details,
including colors and hair details; hence, the created talking video will lose details
through the 3D warping. Thus, we further project the 3D motion flow Fs→d(p)
onto the image plane to derive the 2D motion flow Fs→d and leverage EG3D for
high-quality talking video generation through the 2D warping as detailed in the
following section.
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3.3 Talking Avatar Generation and Self-supervised InpaintNet

Given the 2D warp field Fs→d, we warp the latent EG3D feature map of the
source avatar fs to produce the latent EG3D feature map of the target avatar
fw. This will be further processed by the proposed InpaintNet to handle warp
artifacts and produce fo which is further fed to the EG3D decoder to produce the
high-quality target frames for text-driven talking avatar generation. This design
leverages the strong generative capability of the pre-trained EG3D model for
high-quality avatar generation and is efficient. In the following, we will elaborate
on the InpaintNet, which is trained in a self-supervised manner to hallucinate the
incomplete feature map with warping artifacts and produce temporal consistent
latent features fo.

Due to the inability of the 3DMM model to capture details such as teeth, the
warped feature map may exhibit empty holes in these areas. To mitigate these
artifacts effectively, we introduce InpaintNet to produce a complete feature map
fo. InpaintNet is designed to denoise the warped feature map fw and generate
a high-quality feature map fo suitable for decoding using the decoder of EG3D.
Specifically, the InpaintNet takes five consecutive fw as inputs and then outputs
five fo to enhance the temporal consistency. It employs a residual architecture
to learn the residue between fw and fo. Then, fo is processed effectively by the
superresolution decoder in our pre-trained 3D facial avatar generation model to
produce high-quality results. This enables us to leverage the refined expertise of
the pre-trained decoder, which has been trained on large, high-fidelity datasets,
ensuring detailed, high-quality outputs while maintaining 3D consistency.

3.4 Self-supervised Training Objectives

During training, we design a self-supervised training objective for training In-
paintNet, including self-reconstruction and consistency loss to align synthesized
images and text descriptions of the avatar T1.

Self-reconstruction Loss We synthesize warping artifacts to create paired data
simulating fw and fo using a double-warping strategy. As shown in Figure 2, this
approach involves initially warping from the original pose space to a random pose
space and then back again, resulting in a final warped feature map with artifacts.
This feature is then fed into InpaintNet, allowing us to utilize the rendered
feature fs under the original pose to further produce the supervision signal.
Specifically, we randomly sample a latent code ws in the triplane feature space
and then render a feature map fs ∈ RH/r×W/r×C with a randomly sampled pose.
Further, we randomly sample a 3DMM expression coefficient αe,d to compute
the Fs→d to warp fs to be fw to let the avatar make the associated expression. To
create paired training data, we further warp fw back to the original expression
of fs using Fd→s, where the double warped feature map is denoted as f ′

w. By
doing so, we can utilize f ′

w to simulate the warped feature map in our framework
and create the paired warped-clean dataset {f ′

w, fs}, which is utilized to train
our InpaintNet in a self-supervised manner. Our InpaintNet takes f ′

w as input
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and outputs f ′
o. For the training loss, the self-reconstruction loss comprises two

components. The first one is a image reconstruction loss Lr to minimize the
Euclidean distance between the decoded image I ′o of f ′

o and the rendered ground
truth image Is of fs: Lr = ||I ′o − Is||2. The second component is the perceptual
loss function, which works on the whole image Lp, to enhance the overall image
quality, employing the LPIPS metric [59]: Lp = LPIPS(I ′o, Is).

Consistency Loss During training, we utilize text-based instructions for con-
venience and introduce two losses to enhance consistency. Initially, we input
meaningful text, converting it into text-driven audio features a and further into
expressions. Utilizing our method, frames are animated by these expressions,
producing five decoded images Io. Subsequently, since ground truth is unavail-
able after just one warping, we introduce two types of loss. Firstly, the sync
loss Ls quantifies the discrepancy between text-driven audio a and decoded im-
ages Io using the negative cosine similarity through a binary cross-entropy loss:
Ls = BCELoss(−cosine_similarity(a, Io), 1). This enhances the temporal con-
sistency of generated frames. Secondly, the CLIP loss Lc, inspired by CLIP’s
capabilities, computes the L2 distance between the features of the decoded im-
age Io and the rendered image Is, ensuring consistency in CLIP’s feature space.

Overall Loss Functions The overall training objective function combines these
loss components, weighted by trade-off hyperparameters λr, λp, λc, and λs as

Ltotal = λrLr + λpLp + λcLc + λsLs. (3)

4 Experiments

4.1 Implementation Details

For our model’s training, we set the total batch size to 16 and utilize the Adam
optimizer to fine-tune the network. This optimizer is initialized with a learning
rate of 1e−4 to train InpaintNet. We implement our framework with PyTorch
with two NVIDIA 3090 GPUs. The network training takes less than five hours,
demonstrating the efficiency of our approach. In our implementation, λr and λc

are empirically set to 1 while λp is set to 0.01. Additionally, λs is further adjusted
to 0.001. Besides, for the text-to-speech conversion, we utilize a specific software
solution. For the audio-to-expression aspect, we employ a pre-trained model as
described in [60]. Besides, to further eliminate artifacts resulting from warping
operations, the rendered high-resolution images are also warped, resulting in
the warped high-resolution image Iw based on the driving motion signal. Iw
is then multiplied by a corresponding high-resolution mask and added to the
image after InpaintNet correction Ii. The high-resolution mask is derived using
mouth landmarks from a landmark detector [3]. Within the mouth region, Ii
effectively eliminates artifacts, while outside the region, Iw provides reliable and
high-quality results.
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Fig. 4: Qualitative comparisons with baselines and existing works. For each approach,
We present several frames with different expressions (Please zoom in for a better view).

Methods Task No Cost Data FID ↓ CSIM ↑ AED ↓ Sync ↑

SadTalker [60] Audio-Driven # 196.733 0.831 0.510 5.769

DreamTalk [29] Audio-Driven # 200.856 0.027 0.500 5.676

OTAvatar [30] Exp-Driven # 193.264 0.571 0.506 2.880

Ours Text-Driven ! 187.006 0.843 0.492 3.907

Table 2: Quantitative results compared with the several works in other related tasks.

4.2 Dataset and Evaluation Metrics

To the best of our knowledge, no existing dataset is tailored for evaluating our
proposed task of text-controllable talking avatar video generation. Consequently,
we introduce a novel dataset designed specifically for our task. This dataset
includes detailed text descriptions of avatars, as well as the textual content to
let the avatar speak out, providing a comprehensive benchmark for both training
and evaluation. It further facilitates future development in this field.

Text Descriptions The evaluation dataset has 256 video pairs, consisting of 16
textual avatar descriptions with 16 text contents. Avatar descriptions follow a
specific pattern: A {adjmood} {adjage} {ngender} with {nhair}. adjmood can be
“happy" or “sad", adjage can be “young" or “old", ngender can be “female" or
“male", and nhair can be “short black" or “long blond". This structured represen-
tation aids in generating diverse avatars. Text content includes 2 news, 2 fairy
tales, 2 scientific research, 2 speeches, 4 wiki entries, and 4 translations (English,
Chinese, French, and Japanese).

Text Contents To ensure our application’s relevance to a variety of real-world
scenarios, we collect several text content types commonly appear in practical
open-source applications for further evaluation, including news, fairy tales, scien-
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tific research, speeches, and wiki entries in multiple languages including English,
Chinese, French, and Japanese.

Evaluation Our task includes generating 256 unique video pairs, each created
by matching one of the 16 textual avatar descriptions with 16 text content. To
evaluate the visual quality and lip-synchronization of the generated outputs, we
utilize a range of established metrics. First, we measure the realism of our results
using the Frechet Inception Distance (FID) [21]. Specifically, we adopt images
from the High-definition Talking Face Dataset (HDTF) [61] as the real image
reference. Identity feature preservation is evaluated with Cosine Similarity of
Identity Embeddings (CSIM), based on the ArcFace prediction [11]. To evalu-
ate our model’s ability to capture facial expressions, we use Average Expression
Distance (AED), measuring the L1 distance between the predicted expression
and the ground truth expression from the 3DMM extracted by [13]. Lip synchro-
nization quality, a critical aspect for talking head applications, is assessed using
the SyncNet score [7]. These metrics collectively provide a comprehensive assess-
ment of the quality, authenticity, and synchronization accuracy of our generated
videos.

4.3 Evaluation Result

Quantitative Comparison In the absence of existing solutions for our novel text-
guided talking avatar generation task, we benchmarked our approach against
state-of-the-art (SOTA) methods in related tasks such as audio-driven or video-
driven tasks. Initially, we generated text-guided 3D avatars from text descrip-
tions, resulting in 2D images. Subsequently, we converted the text content to
audio and evaluated SOTA audio-driven methods [29,60]. Additionally, we con-
verted the text to expressions and utilized a video-driven method [30]. Our quan-
titative comparison results, presented in Table 2, indicate that both Dreamtalk
[29] and OTAvatar [30] struggle to preserve high-fidelity details and perform in-
adequately in image quality metrics. In contrast, our method outperforms image
quality and identity preservation metrics, boasting the lowest FID and the high-
est CSIM value. Moreover, it achieves comparable results in lip-synchronization
metrics including AED and Sync, highlighting its effectiveness in generating real-
istic images. Importantly, unlike methods in other tasks, our approach introduces
the novel text-guided talking avatar generation task, expanding the application
of avatar generation by enabling text as the motion signal. Furthermore, the
compared methods are trained on public video datasets with significant training
complexity, while our method demonstrates zero-shot ability without the need
for paired training data, as depicted in Table 1.

Qualitative Comparison Qualitative comparisons between our approach and
baselines are depicted in Figure 4. Based on experimental results, Dreamtalk [29]
and OTAvatar [30] struggle to preserve image details. SadTalker [60] faces chal-
lenges in maintaining view consistency and often generates unnatural images in
large head poses due to the lack of explicit 3D constraints during training. In
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A Happy Young Female with Long Blond Hair

A Sad Young Female with Short Black Hair

A Sad Old Male with Short Black Hair

A Happy Old Male with Long Blond Hair

Fig. 5: Qualitative results. Our approach produces high-fidelity, view-consistent, and
pose-controllable avatars that align seamlessly with the input texts.

A Male with Afro Hair Wearing Black Clothing

A Female with Pixie Cut Hair Wearing Blue Clothing

A Male with Quiff Hair Wearing White Clothing

Harry Potter Wearing Brown Clothing

Angelina Jolie Wearing Earrings

Smiling Emmanuel Macron

Fig. 6: Qualitative results. Our approach produces high-fidelity talking avatar videos
with vivid expressions.

contrast, our method supports a wider range of motion signals, such as text, and
achieves superior performance in image quality and view consistency while pre-
serving high-quality details. Additionally, we demonstrate superior results with
diverse text descriptions (Figure 5), showcasing our method’s ability to pro-
duce varied and realistic outputs. Moreover, our approach excels in maintaining
view consistency, even in large head poses (Figure 5), and can generate diverse
expressions (Figure 6). These figures highlight how our algorithm enables the
generation of text-controllable 3D avatars and facilitates their animation with
various poses and expressions following the given content.

User Study Perceptual quality is assessed via user studies on 16 generated video
clips. Fifteen participants rate lip sync, image fidelity, and realness using Mean
Opinion Scores (MOS). Results in Table 3 show our algorithm’s superior visual
quality and satisfactory lip synchronization.

4.4 Contributions of InpaintNet

We assessed the necessity of our InpaintNet by evaluating its performance along-
side two baseline models. The first baseline, Naive 3DMM in Image Space (N3-I),
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Methods Lip Synchronization ↑ Image Fidelity ↑ Image Realness ↑

DreamTalk 3.51 2.88 2.71
SadTalker 3.58 3.48 3.23
OTAvatar 2.05 1.77 1.75
Ours 3.44 3.78 3.38

Table 3: User study.

Method FID ↓ CSIM ↑ AED ↓ Sync ↑

N3-I (w/o InpaintNet) 193.697 0.776 0.554 3.418

N3-F (w/o InpaintNet) 195.165 0.808 0.510 2.687

PI-I (w/ InpaintNet) 190.006 0.842 0.492 2.929

Ours (w/ InpaintNet) 187.006 0.843 0.492 3.907

Table 4: Ablation study about InpaintNet. We demonstrate the effectiveness of our
InpaintNet’s design.

utilized a 3DMM-based warping approach on EG3D output images without In-
paintNet. We employed our dynamic animation method to warp the final image
output from the EG3D decoder. The second baseline, Naive 3DMM in Feature
Space (N3-F), applied a 3DMM-based warping method in the EG3D feature
space without InpaintNet. Our proposed method, Proposed InpaintNet in Im-
age Space (PI-I), trained an image-level InpaintNet to denoise EG3D output
images instead of the feature space using a 3DMM-based animation technique.

The comparison results, shown in Table 4, indicate the effectiveness of our
InpaintNet. Specifically, comparing our full method with N3-F and PI-I with
N3-I highlights improvements, particularly in image quality metrics such as FID.
Moreover, the results between the full method and PI-I affirm the advantages of
our approach to warp in the feature space rather than the image space.

4.5 Contributions of Loss Function

The impact of each loss function to train InpaintNet is shown in Table 5. The
study assesses three configurations: Lr, Lp plus Lc, and the full combination
including Ls. Results show that the full combination configuration leads to su-
perior results in Sync, reflecting the importance of consistency loss design. How-
ever, the image quality metric like FID primarily assesses global image quality,
whereas InpaintNet specifically addresses the removal of artifacts from warping,
which only affects small parts of the image. Similarly, AED evaluates key point
accuracy using 3DMM, and CSIM measures identity preservation. Therefore,
the improvements brought by InpaintNet may not be fully captured by these
metrics. To better demonstrate the effectiveness of InpaintNet, we introduce an
additional metric, FIDl. To compute FIDl, we first crop both the ground truth
and final images around regions where the warping operation might introduce
artifacts (e.g., around the lip and chin regions) and then calculate the FID score
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Loss FID ↓ FIDl ↓ CSIM ↑ AED ↓ Sync ↑

Lr 187.709 154.683 0.842 0.492 2.840

Lr + Lp 187.687 153.816 0.842 0.493 2.847

Lr + Lp + Lc 187.635 151.193 0.843 0.492 2.863

Lr + Lp + Lc + Ls (Ours) 187.006 149.784 0.843 0.492 3.907

Table 5: Ablation study about loss function.
for these cropped areas. This approach allows us to focus on the areas where
InpaintNet has the most impact, as shown in Table 5. Overall, these findings
underscore the effectiveness of our integrated loss functions in producing high-
quality, realistic, and synchronized talking avatar videos.

5 Conclusion

In this paper, we introduce the novel task of text-controllable talking avatar
generation. We introduce a zero-shot approach that adapts a 3D-aware avatar
generation model to this task without requiring data. Our approach seamlessly
integrates EG3D for high-fidelity avatar creation, CLIP for aligning text and
visual outputs, and 3DMM for dynamic 3D animation capabilities. Further, we
propose motion-flow-based warping in the latent feature space of EG3D along
with a new InpaintNet to rectify warping artifacts. The outputs are then further
refined by the EG3D decoder to produce high-quality and temporally consistent
avatar videos. Extensive experiments show that our approach can generate high-
fidelity talking avatars with rich facial details, natural expressions, and accurate
alignment with user-specified text, which cannot be readily achieved by any
existing works as far as we know.

Limitations. Despite the high generative quality achieved, our method’s perfor-
mance is constrained by the accuracy of the 3DMM model. Notably, the model
we utilize [34] lacks control over eye regions, resulting in avatars without realistic
eye movements. It’s worth mentioning that our approach remains independent of
the specific 3DMM model employed, suggesting that this issue could potentially
be addressed by adopting a more advanced 3DMM model in the future.

Societal Impact. Our study aims to generate positive impacts for users to easily
create talking avatars. However, we acknowledge the risks associated with misuse,
given our model’s ability to generate realistic face images. We strongly urge
caution in its use and emphasize the importance of marking synthesized content
as fake, with users assuming full responsibility. Our goal is to ensure that research
in this area is directed solely towards positive applications.

Future Direction. Our model can create photorealistic talking avatar videos,
opening up a new avenue in avatar creation and animation. Future work could
extend our approach to create full-body photorealistic 3D talking avatars using
texts.
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