Supplementary Material for GOEmbed: Gradient
Origin Embeddings for Representation Agnostic
3D Feature Learning

GOEmbedFusion: GOEmbed based 3D Diffusion with Forward Models
L)
~
h
VR,

nnnnnnnn

Fig. 1: Illustration diagram for the GOEmbedFusion method. Best viewed zoomed in.

1 Preliminaries

We start with a summary of the required preliminaries for GONs: Gradient
Origin Networks in sec. 1.1 and Diffusion with Forward models in sec. 1.2.
Please refer to the papers of Bond-Taylor and Willcocks [¢], and Tewari et al. [69]
for more details about these methods.

1.1 Preliminaries: GONs (Gradient Origin Networks)

Given a dataset of observed samples & ~ pgaca, Wwhere x € R™ a Gradient Origin
Network [8] (GON) auto-encodes the input z into reconstructed # via a much
smaller latent space z € R¥, where k < m, without requiring an explicit encoder
network. The encoder mapping of the input z to latent z, Fup. : R™ — R¥, is
defined as the gradient of the log-likelihood of z under the decoder network
Fiee : RF = R™ wrt. a known fixed origin latent zp. In practice, the 2y is always
set to zeros, i.e., zg € Rko and the mean squared error between Fgec(20) and x
is used as an estimate otL the log-likelihood as follows:

z = Fepe()
= =V ||z = Faee(20) 3. (1)

The decoding of z can now simply be obtained as a forward pass of the decoder
network Fyec:

Fee(=V oz — FdeC(ZO)H%)- (2)

2 A. Karnewar et al.

Using this encoder-less auto-encoding mechanism, the decoder network can be
trained using the standard log-likelihood maximization objective (again esti-
mated via mean squared error):

LMP(z,3) = ||z — 23

= |2 = Faee(=Vz, 2 = Faee(20)[13)113- (3)

In the GON paper [8], Bond-Taylor and Willcocks also proposed a variational
version of the GON autoencoder to enable generative sampling of the latent
space, a coordinate-based implicit version of the GON as a secondary application,
and a multi-step generalisation of the Gradient Origin Networks mechanism. But
we only describe the auto-encoder version here, because it is the most relevant
one to our proposed GOEmbed encodings (sec 3 of main paper).

1.2 Preliminaries: Diffusion with Forward models

Diffusion models define the generative process through two markov chains, namely
forward (diffusion) and reverse (denoising), over the observed data distribution
Pdata -- The most popular variant DDPM [27] defines the forward distribution
q(zo.r) = q(x0, X1, ..., T4, ..., x7) as the markov chain of T Gaussian transitions:

T

q(zo.7) = qwo) [[a(welai—1)
1

where,

q(we|lzi-1) = N(Vewwi—1, (1 — ar)I), (4)

where the sequence («y.7) instantiates a monotonically decreasing noise schedule
such that the marginal over the last variable approximately equals a standard
Gaussian distribution, i.e. ¢(xr|zr_1) ~ q(z1) ~ N(0,). Similar to the forward
process, the reverse process is also defined as another markov chain of T Gaussian
transitions:

T

plaro) = plar) [[o1z
1

where,
p(z0) = q(z0) = pdata ()
pler) = q(zr) = N(0,1)

po(zilr) = N(yai1Dy(x, 1), (1 — ay 1)), ()

where the mean of the Gaussian is given by a learned timestep-conditioned
denoiser network Dy : R™ — R™. The network Dy can be trained by minimizing

! please note that the forward diffusion process here is not to be confused with the
forward setting of Diffusion with Forward models.

Supplementary Material for GOEmbed 3

GOEmbed Plenoptic Encoding

-4 | ~ i
Nl

GOEmbed

Fig. 2: Illustration diagram for the GOEmbed Plenoptic Encoding experimental setup.

the expectation of the KL divergence between [44] the forward and the reverse
transition distributions of a given particular latent z; over the timesteps ¢ as

Laittusion = Ee[Drr(q(xe|ze—1)||po(xe|Ti41))], (6)

and synthetic samples can be drawn from the trained model by iterating T-times
over eq. 5 starting from samples x7 drawn from standard Gaussian distribution
N(0,I). In practice, assuming that the network Dgy(z;,t) outputs an estimate of
the clean data sample &g &~ x(instead of the mean of the Gaussian transition
over the previous latent x;_1, the KL divergence objective simplifies to the mean
squared error between &y and zq [14]

Lsimple (0, o) = Eq[||zo — Do (. 1)][3]. (7)

DFM models [69] consider the class of stochastic-inverse problems, like in-
verse 3D graphics, which pose a unique challenge where we do not have direct
access to the samples x ~ pgata, but only have access to partial observations of
x obtained through a differentiable forward function o = forward(z, ¢), where ¢
are the parameters for obtaining the observation. The mathematical framework
of DFM

learns the conditional distribution p(z|o, ¢) over the unobserved data = given
the partial observations (o, ¢), by modeling the pushforward distribution

Do (Otrgt |0CtXt, ¢ctxt, ¢trgt). (8)

4 A. Karnewar et al.

The observations (0%t ¢<***) form the context while (0*'8*, ¢*¢%) are the target
observations.
Do (Ogr%:c ‘Octxt’ (z)ctxt, ¢trgt) —
T
trgt trgt| trgt
p(o;g) Hp9 (Otligl |0trg ’ OCtXtv d)CtXta ¢trgt) (9)
1

In order to implicitly model the conditional distribution over the data z from the
pushforward, each of the learned reverse transition pg (0} [of™8", oot getxt ptrat)

is defined using the following three steps:

1z, = denoise (o™t oi"8" ¢ Xt ptrat) (10)
0;"8" = forward(z, p*'8") (11)
08 ~ N (Var—10,"™", (1 — ay_1)I). (12)

Equations 10 and 11 define the same functionality as that of the Dy denoiser
network, but also integrate the differentiable forward function in the process.
The noisy versions of the observed target views o' can be obtained by the
straightforward diffusion process as defined in eq. 4 without any changes. The
Forward-Diffusion model can be trained using a conditional version of the KL
divergence of eq. 6 as follows:

Eforward—diﬁ"usion

= Ee[Drc1(q(0}"™ [0)5) 1po (0} |o}"8y, 0,), 6118Y)].

And lastly, synthetic samples of the unobserved underlying variable x can be
generated in a auto-regressive manner. First we draw a sample 0'"8* starting from
a given set of (0t ¢°™*) context observations by iterating over equations 10,
11, and 12 T times. A partial estimate of the unobserved underlying variable)
is obtained from the last denoising step. The complete sample x can be generated
by merging n different partial estimates zg:"_l by repeating the former process
n-times and accumulating the drawn o'*8's together as a new context each time.

2 GOEmbedFusion implementation details

Fig. 1 illustrates the pipeline of the proposed GOEmbedFusion method. Al-
though egs. 5-5 of the main paper describe the model mathematically, more
algorithmic details are provided as follows: We do all the experiments with the
Triplane 3D representation. For the GOEmbedFusion model, we use 4 source
views and 2 target views for training. We train on the OmniObject3D dataset
with a batch size of 16 for 1M iterations. Of all the data and metadata provided
in the dataset, we make use of the RGB, depth and normal-map renders of the
textured-meshes available as part of the scans and the 3D camera parameters of
the rendered views. All the rendered maps in the dataset are natively rendered

Supplementary Material for GOEmbed 5

GOEmbed Reconstruction

MSE-Loss

R PNy il

- pro—

/= \
R Pt
~ GOEmbed - -
S R |

=
T o Reconstrunction <
h = a backbone N
| 5 Transformer) |
e (st BE i

Fig. 3: Illustration diagram for the GOEmbed 3D reconstruction experimental setup.

at the resolution of [800 x 800] in Blender [9]. Each of the 3D scan contains
~100 renders from random viewpoints on the upper hemisphere of the 3D cen-
tered objects. We use only the RGB maps for training the model, while use the
depth-maps and normal-maps for computing metrics.

For the diffusion details, we base our code on the guided-diffusion code [1],
and use the default values of 0.0001 and 0.02 for the beta-start and beta-end
respectively. For the remaining, we use 7' = 1000 timesteps, cosine noise sched-
ule and the x-start as the model output. Lastly, we use a single learning rate
5e-5 for the entire span of the training.

3 Discussion on 3D reconstruction

Fig. 2 details the setup of the Plenoptic Encoding experiments, while Fig 3 de-
picts the setup for the sparse-view 3D reconstruction. As we can see, the only
difference between these two setups is The presence of a deep learning reconstruc-
tion backbone between the two. For this baseline, we train a regression based
network which reconstructs the 3D scene using only the GOEmbed encoded 3D
representation as input. Note that this baseline doesn’t apply noise anywhere,
and hence gives purely deterministic output. As can be seen from the scores of
table 3 of the main paper, the reconstruction only (regression) model achieves
27.650 dB, while the GOEmbedFusion gets as close as 26.447 dB PSNR by itself.
Lastly, the Transformer architecture used by us is based on the DiT-XL/2 model
of Peebles et al. [54].

4 Checkerboard artifacts in generated 3D samples

Fig. 4 depicts the presence of checkerboard artifacts in the renders of the gen-
erated samples by our GOEmbedFusion model. The norm-heatmap of the flat-
tened Triplane features sheds deeper light on the nature of these artifacts. These

6 A. Karnewar et al.

GOEmbed generated sample render Norm heatmap of the generated Triplane

250

200

150

100

50

Fig. 4: Presence of checkerboard artifacts in the GOEmbedFusion samples.

checkerboard patterns are highly reminiscent of the checkerboard patterns dis-
played by the recent work of Denoising-VIT [84], which we believe can be rectified
using better positional encodings in the DIT network.

