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Fig. 1: We propose the GOEmbed (Gradient Origin Embedding) mechanism that
encodes source views (octxt) and camera parameters (ϕctxt) into arbitrary 3D Radiance-
Field representations g(c, d) (sec. 3). We show how these general-purpose GOEmbed-
dings can be used in the context of 3D DFMs (Di�usion with Forward Models) (sec. 5)
and for sparse-view 3D reconstruction (sec. 6).

Abstract. Encoding information from 2D views of an object into a 3D
representation is crucial for generalized 3D feature extraction. Such fea-
tures can then enable 3D reconstruction, 3D generation, and other ap-
plications. We propose GOEmbed (Gradient Origin Embeddings) that
encodes input 2D images into any 3D representation, without requiring
a pre-trained image feature extractor; unlike typical prior approaches in
which input images are either encoded using 2D features extracted from
large pre-trained models, or customized features are designed to handle
di�erent 3D representations; or worse, encoders may not yet be available
for specialized 3D neural representations such as MLPs and hash-grids.
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We extensively evaluate our proposed GOEmbed under di�erent exper-
imental settings on the OmniObject3D benchmark. First, we evaluate
how well the mechanism compares against prior encoding mechanisms
on multiple 3D representations using an illustrative experiment called
Plenoptic-Encoding. Second, the e�cacy of the GOEmbed mechanism
is further demonstrated by achieving a new SOTA FID of 22.12 on the
OmniObject3D generation task using a combination of GOEmbed and
DFM (Di�usion with Forward Models), which we call GOEmbedFusion.
Finally, we evaluate how the GOEmbed mechanism bolsters sparse-view
3D reconstruction pipelines.

1 Introduction

The rate of progress in 3D Computer Vision research has risen in the last decade
due to increased interest in various AR (Augmented Reality), VR (Virtual Real-
ity) and MR (Mixed Reality) applications [17,58,64,65,80]. Many 3D Computer
Vision problems are newly being viewed in the light of Deep-Learning based
solutions. The process of encoding the information in 2D images into deep fea-
tures over the chosen 3D representation can be found in the Deep-Learning
solutions to almost all these problems, for instance, consider various solutions
to long-standing problems such as MVS (Multi-View Stereo) [28, 47, 88], NVS
(Novel-View Synthesis) or IBR (Image Based Rendering) [14,27,41,69,85], and
3D reconstruction [54,72,73], as well as to the nascent 3D problems such as 3D
synthesis [12,32,66], and 3D distillation [30,38]. Surprisingly, despite being such
a critical operation, no systematic standalone study of this 2D to 3D encoding
operation exists (to the best of our knowledge).

3D scenes/assets do not have a de-facto data representation, and di�erent
representations are utilized depending upon the requirements of the applica-
tions. For instance, just for representing Radiance Fields of static 3D assets,
various neural data representations such as MLPs [3, 44, 60], Triplanes [10, 13],
Feature-voxel-grids [39, 40], Hash-grids [46, 63], as well as non-neural ones like
ReLU-Fields [31], Plenoxels [83], DVGo [62], 3DGS [34] are being utilized in var-
ious 3D applications. Thus, given this disarray around 3D scene representations,
it is a key challenge to come up with a 2D-to-3D encoding method that can:
(i) generalize to arbitrary 3D representations, (ii) while being able to capture
maximum information in the 3D features from the 2D images.

Existing methods of encoding can be grouped into two categories. (i) In
the �rst category, the methods are similar to cost-volume-construction-like ap-
proaches where 2D deep features are extracted from the images, and then these
2D features are un-projected into the 3D space. On top of the deep-feature
extraction network, this un-projection operation can require predicted depths
using o�-the-shelf depth-estimation models [4,6,82] for 3D representations such
as point-clouds [1, 52, 74]. For 3D representations such as feature-voxel-grids,
per-voxel-costs in the form of variance of the per-2D-view features implicitly en-
codes 3D depths but requires large amount of compute-memory [47, 88]. What
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is further limiting is that the un-projection operation, is non-trivial and chal-
lenging to extend to specialized 3D neural representations such as MLPs and
Hash-grids, and hence the approaches from this category are mostly limited to
only certain 3D representations. (ii) In the second category, the methods entirely
circumvent all forms of 3D inductive biases and directly inject the 2D features
into the problem speci�c backbone networks. For example, methods like NeRF-
former [53] and LRM [27] use cross-attention to directly inject 2D features into
the 3D sparse-view-reconstruction backbone network. Apart from the limitation
of requiring the memory-heavy cross-attention operation, given the results of our
sparse-view-3D-reconstruction experiments (sec. 6), we hypothesize that these
learned-feature-injection approaches may not be learning su�cient 3D-priors and
are specializing only to the domains of training (albeit on a large-scale).

To overcome the aforementioned limitations, we proposeGOEmbed:Gradient
Origin Embeddings (�g. 1) to encode the information in 2D images into any
3D representation which exists currently or which will be proposed in the future;
as long as a di�erentiable render operation can be de�ned on it. Succinctly, the
GOEmbed de�nes the 3D embeddings as the gradient of the mean-squared-error
between renders (of the origin 3D representation) and the G.T. 2D views wrt. a
prede�ned origin over the chosen 3D representation (�g. 2 and sec. 3). In most
cases (except for MLPs due to symmetry-breaking), a simple zero-feature ini-
tialization is su�cient to de�ne the origin. Apart from the 3D representation
agnostic applicability, our GOEmbeddings are light-weight since they do not re-
quire memory-heavy large pretrained 2D feature-extraction networks, and they
try to maximize the information transfer between 2D and 3D. In summary, our
contributions are:

� We propose the GOEmbed as a representation agnostic encoding mecha-
nism of 2D source views into di�erent 3D representations (sec. 3, eq. 1).

� We propose a novel 3D di�usion pipeline by combining our GOEmbed with
DFM (Di�usion with Forward Models) to achieve the state-of-the-art score
on the OmniObject3D generation benchmark (sec. 5, eq. 5 - 5).

� We evaluate the e�cacy of GOEmbed for extracting di�erent 3D representa-
tions from source images in the illustrative Plenoptic Encoding experiment
(sec. 4); and also evaluate its utility in the sparse-view 3D reconstruction
task (sec. 6).

2 Related Work

Our proposed method is primarily an attempt at a systematic study of 2D-to-3D
encoding mechanisms, thus we �rstly cover the prior encoding methods in subsec.
2.1. Secondly, since our method can encode 2D into arbitrary 3D representations,
we cover the works related to neural 3D scene representations in subsec 2.2. And
lastly, since we propose a new realisation of the DFM framework, we cover prior
3D generative modeling works in subsec 2.3. Please refer to the survey works
of Xie et al. [80] and Shi et al. [58] for more exhaustive coverage on 3D neural
representations and 3D generative models, respectively.
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2.1 2D-to-3D Encoding

Most of the 3D encoding mechanisms proposed till now have been in the con-
text of a larger problem such as MVS or NVS, and there has not been a stan-
dalone principled study of the encoding mechanisms yet. Nevertheless, the early
works [20] constructed pixel-disparity based 3D cost-volumes for MVS (Multi-
View Stereo) problems. These raw-pixel based cost-volumes were soon super-
seded by 2D deep image feature based ones [28,30,32,47,88] due their memory-
compactness and information expressiveness. These approaches typically proceed
as: �rst obtain per-image-per-pixel features using large pretrained image net-
works such as ResNet [22] or DinoV2 [50]; then these features are un-projected
into the 3D space using the camera parameters associated with the views. The
un-projected features are then accumulated into the feature-voxel grid yielding
the cost-volume to be used in various 3D problem contexts. Apart from voxel-
grids, recent works also splat these features on Triplanes [8,21]. The most similar
work to our proposed GOEmbed in terms of idea is the one from Bond-Taylor
and Willcocks titled Gradient Origin Networks (GON) [7], even though their
proposal has no context of 3D encodings. We take inspiration from GONs, but
our proposed GOEmbedings are di�erent from them in that: (i) while the pur-
pose of GON is to obtain a compressed latent space, our GOEmbed is aimed
at obtaining a coarse partial estimate of the plenoptic 3D scene given 2D im-
age observations (sec. 3); and (ii) our GOEmbed encodings are much more local
compared to the latent embeddings obtained using the GON. Please refer to the
supplementary for a discussion of GON.

2.2 3D Neural Representations

Neural Fields movement in the data representations research was spear-headed
by the works such as OccupancyNetworks [49] and SRNs [60] that proposed to
use MLPs for representing the 3D shapes as occupancy �elds and SDFs (signed-
distance �elds) respectively. But, most notably, the work NeRF (Neural Radiance
Fields) [44] made this idea popular by demonstrating the use of MLPs in the
context of an application as complex as 3D Novel-view-synthesis. Concurrently,
another important work called SIREN [59] showed that sinusoid-activated MLPs
could also represent images, videos, MRIs, etc. The research progress exploded
after these two works, leading to various works [31, 62, 83, 84] proposing voxel-
based modi�cations to the NeRF scene representation; others [18,46,68] speeding
up the training and inference of NeRFs. Numerous works such as Acorn [42],
NSVF [37], Instant-NGP [46], Variable Bitrate Neural Fields [63], TensoRF [13],
and Triplanes [10] mark some of the key hybrid explicit-implicit versions of
Neural 3D scene representations. This is but a sampler of the vast distribution
of implicit, explicit, and hybrid methods proposed for representing static 3D
scenes in the last few years or so. While previous encoding methods only allow
2D image features to be encoded into voxel-grids (or Triplanes via splatting), our
proposed method can be applied to encode the features into almost any of these
proposed representations. In addition, we believe GOEmbed can be applied even
to scene representations that will be proposed in the future.
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2.3 3D Generative Models

The earliest forms of deep learning based 3D generative models can be traced
back to 3D-GAN [75]; where prior non-learning based methods of 3D shape
reconstruction or synthesis involved template based permutation approaches
[29]. Methods evolved to PlatonicGAN [23] and PrGAN [15] that generates 3D
shapes from an unstructured corpus of uni-category images. More interesting
is the approach of HoloGAN [48] that adds a 3D inductive bias in the form
of a 3D feature-grid and a neural renderer to the conventional generator archi-
tecture of 2D GAN. Utilizing the di�erentiable Emission-Absorption renderer
component of the NeRF [44], works like GRAF [55], VoxGRAF [56], and Pi-
GAN [11] train 3D GANs with better view-consistency using category-speci�c
image datasets. Orthogonal to these approaches, StyleNeRF [19] proposed a
hybrid approach which utilised a core-3D graf-like base model, followed by a
HoloGAN-like neural renderer to upsample the rendered resolution. Surpris-
ingly, due to carefully crafted architecture and strong regularization, StyleNeRF
generated samples hold formidable 3D view-consistency. Simultaneously various
works [33, 35, 61, 76, 77, 87] proposed GAN and Di�usion based 3D generative
models on single-3D scene setting. This progress continued steadily till the re-
cent milestone works in 3D generative models such as EG3D [10], which trains
a 3D GAN on newly proposed 3D Triplane neural representation; GET3D [16],
which uses DMTet [57] module in the GAN to directly generate 3D textured
meshes; Di�RF [45], which proposed the �rst preliminary 3D di�usion model on
3D voxels similar to 3D-GAN [75]; works such as RenderDi�usion [2], HoloD-
i�usion [32], DFM [66] which train 3D di�usion models only using 2D images;
until the most recent Di�TF [9] that adapted the Di�RF training pipeline to
Triplanes and improved it further to achieve the state-of-the art results on the
OmniObject3D [79] dataset. Our proposed GOEmbedFusion pipeline is quite
similar to DFM [66], but di�ers from it in the �rst step. While DFM used the
voxel-grid speci�c feature-extractor, GOEmbedFusion uses GOEmbed for en-
coding the features from 2D Images into any chosen 3D scene representation,
making it more generally applicable.

3 Method

3.1 GOEmbed: Gradient Origin Embeddings

Let g(c, d) represent a static 3D scene as a Radiance-Field such that c = [x, y, z]
denotes the 3D coordinates of a point in the Euclidean space, d = [θ, γ]3 denotes
the spherical polar coordinates of an outgoing direction from the point, and
the function g : R5 → R4 maps each 3D coordinate and a particular outgoing
direction to four values (σ,R,G,B). Here, σ represents density and [R,G,B]

3 We deviate from the more common use of [θ, ϕ] for spherical polar coordinates in
favour of [θ, γ] to avoid confusion with ϕctxt and ϕtrgt used to denote context and
target camera parameters respectively.



6 A. Karnewar et al.

origin

poses

source-views

Triplane

GOEmbed: Gradient Origin Embedding

Render Backprop

origin with params

poses

source-views

Fig. 2: GOEmbed illustration. We demonstrate the mechanism here using the Tri-
plane representation for g(c, d), but note that this can be applied to other representa-
tions as well. The GOEmbed mechanism (eq. 1) consists of two steps. First we render
the origin ζ0 from the context-poses ϕctxt; then we compute the gradient of the MSE
between the renders and the source-views octxt wrt. the origin ζ0 which gives us the
GOEmbed encoding ζenc.

represents the outgoing radiance. Let R(g, ϕ) denote the rendering functional

that converts the Radiance-Field function into an image of a certain resolution
from a certain camera viewpoint, as described by the camera parameters ϕ. We
use the di�erentiable Emission-Absorption Volume Raymarching algorithm for
rendering [43,44]. For the encoding mechanism to be uni�ed and general-purpose,
it must have the following three properties:

(i) It should be able to encode one or more views alike.
(ii) It should generalize to any parameterization/realization of the function g,

i.e., the encoding mechanism should be applicable irrespective of whether
the Radiance-Field is represented as an MLP [44], a Hash-grid [46], a Tri-
plane [10,70], or a Voxel-grid [31,62,83].

(iii) It should try to maximize the information transfer from the 2D views to
the 3D embedding.

We introduce the Gradient Origin Embeddings, where we de�ne the encoding of
the observations (2D views) as the gradient of the mean-squared error between
the rendered and ground truth 2D views with respect to a prede�ned origin (zero
vector or features) 3D representation.

Without any loss of generality, assuming that ζ are the parameters of the g
function (i.e., the features/weights of the 3D Radiance-Field) and ζ0 denotes the
origin (zero features/weights), we de�ne the encodings ζenc as (�g. 2):

ζenc := GOEmbed(g, octxt, ϕctxt)

:= −∇ζ0 ||octxt −R(g(c, d; ζ0), ϕ
ctxt)||22 (1)
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where, octxt and ϕctxt are the G.T. 2D views and their camera parameters, re-
spectively, which are to be encoded into the 3D representation ζenc. Note that
the proposed encoding function GOEmbed backpropagates through the di�er-
entiable rendering functional R. By construction, such an encoding satis�es the
formerly stated properties (i) and (ii). Further, we minimize the loss function

LGOEmbed(octxt, otrgt) := ||octxt − ôctxt||22 + ||otrgt − ôtrgt||22
where, ô = R(g(c, d; ζenc), ϕ), (2)

for maximizing the information content in the encodings ζenc to satisfy prop-
erty (iii). Here, ϕctxt are the context views used for encoding while ϕtrgt are
some target views of the same scene but di�erent from the source ones. Intu-
itively, we repurpose the backward pass of the rendering functional to encode
the information in the source views octxt into the parameters of the 3D scene
representation ζ. Thus, as long as a mathematically di�erentiable rendering op-
erator is possible on it, any 3D scene representation can be encoded using our
GOEmbed encoder.

3.2 Experimental Evaluation Rubric

We evaluate the generality of GOEmbed mechanism along three axes: �rstly,
to measure the information transfer, we run experiments in a Plenoptic Encod-
ing setting (sec. 4); secondly, we train the GOEmbedFusion model to learn a
3D generative model using 2D images to evaluate its 3D generative capability
(sec. 5); and �nally, we also evaluate the GOEmbed mechanism in a sparse-view
3D reconstruction setting (sec. 6).

Dataset. We perform all our experiments on the recently released OmniObject3D
dataset [79] containing ∼6K 3D scans of real world objects from daily life. The
dataset contains a large-vocabulary of ∼200 categories of daily life classes having
some overlap with COCO [36]. Only for our non-forward di�usion baseline, we
also use the text-captions recently released by the OmniObject3d authors at
their GitHub page [78].

Metrics. For the experiments in the Plenoptic-Encoding setting (sec. 4), we use
the standard image reconstruction metrics PSNR, LPIPS [86] and SSIM [71],
while for the quantitative analysis in generative modeling experiments (sec. 5)
we use the FID [24] and KID [5] metrics following prior works. And, lastly
for the 3D reconstruction experiments (sec. 6) we again use the standard image
reconstruction metrics similar to the Plenoptic-Encoding experiments. We color
code all the scores as �rst , second , and third .

4 Plenoptic Encoding

To evaluate the information transfer from the source views to the encoded 3D
representation, we train the standalone GOEmbed component on its own before
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Fig. 3: Plenoptic Encoding Qualitative Evaluation. The rows MLP, Triplane and
Voxel-grid show the renders of the GOEmbed encoded representations from the target-
view respectively, depicting the varying amounts with which GOEmbed is capable of
encoding the 2D source information into 3D. The colour-coded columns demonstrate
the e�ect of varying the number of source-views (top row) used in the GOEmbed en-
coding, viz. 1, 2, 3, and 4. The SSO column shows the target render of the single-
scene-over�tted representation while the G.T. column shows the mesh-render from the
dataset (repeated for clarity). The rightmost column visualizes the pixelwise squared
error between the G.T. and the SSO.

Table 1: Plenoptic Encoding Quantitative Evaluation. PSNR(↑), LPIPS(↓) and
SSIM(↑) reported on three di�erent representations of the 3D Radiance-Field g, namely,
Triplanes, Voxel-Grids and MLPs. All the metrics are evaluated for target views (dif-
ferent from the source views) against the G.T. mesh renders from the dataset. The
SSO (Single Scene Over�tting) scores denote the case of individually �tting the repre-
sentations to the 3D scenes.

Method Triplane Voxel-Grid MLP

PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑)
DinoV2 1 source-view 14.182 1.286 0.425 14.419 1.151 0.485 N/A N/A N/A
DinoV2 2 source-views 14.482 1.235 0.435 15.330 0.925 0.526 N/A N/A N/A
DinoV2 3 source-views 14.664 1.213 0.430 15.685 0.864 0.546 N/A N/A N/A
DinoV2 4 source-views 14.711 1.199 0.425 15.834 0.857 0.551 N/A N/A N/A

(Ours) 1 source-view 15.711 1.025 0.477 15.514 1.008 0.479 11.208 1.124 0.496
(Ours) 2 source-views 15.513 1.068 0.468 15.319 1.067 0.480 11.406 1.197 0.489
(Ours) 3 source-views 15.672 1.129 0.456 15.590 1.110 0.484 11.490 1.202 0.500
(Ours) 4 source-views 15.919 1.150 0.472 15.755 1.145 0.486 11.599 1.195 0.505

SSO 28.165 0.087 0.941 32.061 0.067 0.9582 27.382 0.119 0.918

using it in di�erent contexts. Speci�cally, given the dataset D = {(Ij
i , ϕ

j
i )|i ∈

[1, N ] and j ∈ [1, C]} of N 3D scenes where each scene contains C images and
camera parameters, we de�ne the Plenoptic Encoding as a mechanism which
encodes k source views and camera parameters, of a certain 3D scene, into the
representation g (whose parameters are ζ). The encoded scene representation
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should be such that the rendered views from the same source cameras, and some
l di�erent target cameras, should be as close as possible to the G.T. images I,
i.e., the PlenopticEncoder PE : Rk×h×w×c × Rk×4×4 → R(k+l)×h×w×c should
minimize the following mean squared error objective:

LPE-MSE := E(I,ϕ)∼D∥I − PE(I, ϕ)∥22.

Although this experimental setup is quite similar to typical MVS/NVS or 3D
reconstruction or 3D prior learning setups, in form and essence; we note here
that the plenoptic encoder PE is neither targeted to do Multi-View Stereo nor
3D reconstruction. To set the correct expectations, we note that the main and
the only goal here is to evaluate how much information is transferred from the 2D
images to the chosen 3D representation. We evaluate the GOEmbed encodings
on three di�erent 3D Radiance-Field representations, g, namely Triplanes [10],
Feature-Voxel grids [31, 32, 62, 83], and MLPs [44] and compare them to cost-
volume like approaches where possible.

All the evaluations in Table 1 are done on 100 randomly chosen test scenes
from the OmniObject3D dataset on 1, 2, 3, and 4, number of source views.
Although the loss is optimized on both source and target camera views, the
reported scores are for target-views only, since we are interested in measuring
the �3D� encoding ability, as opposed to over�tting the source views into the
representation. If we consider only the source-view metrics, there is a possibility
of the degenerate solution where the encoder copies all the source views as-it-is
disregarding any 3D structure. Also, all the scores are computed against the
renders of the G.T. meshes, but since some quality can be lost by the choice of
the representation itself, the SSO (Single-Scene-Over�tting) version, where we
�t the representation directly to the scene, is also provided for a more grounded
comparison.

Table 1 summarizes the scores obtained in this setup of experiments. We
compare against cost-volume construction approach using DinoV2 [50], where
we �rst un-project the per-view image features into a feature-voxel grid and
then accumulate the per-view features into the cost-volume similar to StereoMa-
chines [28] and many others [14,32,38,47,88]. We further splat the voxel-features
into the mutually orthogonal planes in case of the Triplanes based cost-volume
baseline. As apparent from the table, GOEmbed outperforms the DinoV2 cost-
volume-approach for Triplanes and comes very close to the Voxel-Grids one.
Note that the cost-volume approach is not trivial to come-up with for MLPs,
whereas our GOEmbed can handle this representation by design and obtains
formidable scores in this setup. Apart from this advantage, GOEmbed only has
learnable parameters (∼17K) as part of the renderer functional R (usually an
MLP), while the DinoV2 has excess of ∼1B parameters, albeit pretrained. Fi-
nally, what is most surprising is that our light-weight GOEmbed approach is
actually able to obtain almost 50% of the SSO scores which is the practically
achievable performance for the chosen 3D representations (last row of table 1).
Figure 3 illustrates this phenomenon visually.
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Fig. 4: 3D Generation Qualitative Evaluation. 3D samples generated by our
GOEmbedFusion compared to the prior GAN and Di�usion based baselines.

Although prior works like RenderDi�usion [2] and HoloDi�usion [32] were
already proposed to train 3D di�usion models using only 2D images, recently,
the notable work of Tewari et al. [66] proposed a uni�ed mathematical frame-
work for the stochastic-inverse setting of generative modeling where we only
have access to partial observations of the underlying ground-truth signals, but
never the underlying signals themselves; in which 3D inverse graphics is a spe-
cial case. Please refer to the supplementary for a discussion on the mathematical
framework of DFM (Di�usion with Forward Models). Despite this, the proposed
vanilla realization of the DFM framework for 3D generative modeling has certain
limitations; �rst, it is only speci�c to the feature-point-cloud 3D representation
and does not generalize to other 3D representations; second, it cannot generate
purely unconditional 3D samples since it is a 2D view conditioned 3D di�usion
model; and third, it requires a computationally expensive auto-regressive process
for sampling the underlying 3D scenes.

We propose a novel realization of the DFM framework called GOEmbed-
Fusion where our proposed GOEmbed drives the di�usion with forward model
training pipeline; while overcoming all the limitations as mentioned earlier. Our
unobserved samples here correspond to the ζ parameters since we are interested
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in modeling the generative probability distribution over the 3D Radiance-Fields.
A single forward pass through our proposed GOEmbedFusion pipeline is de�ned
through the following equations:

ζenc := GOEmbed(g, octxt, ϕctxt)

ζ̂0 := Dθ(ζT , T ; ζenc)

ζ̂t ∼ q(ζ̂t|ζ̂t−1) = q(ζ̂0)

t∏
k=1

q(ζ̂k|ζ̂k−1)

ôtrgt := R(g(c, d;Dθ(ζ̂t, t; ζenc)), ϕ
trgt),

where T corresponds to the highest timestep and ζT ∼ N (0, I) is a sample
of the standard Gaussian noise distribution. Equation 5 �rst encodes the con-
text observations and their parameters (octxt, ϕctxt) into the GOEmbed encoding
ζenc using eq. 1. Then, eq. 5 uses the denoiser network to predict a pseudo-
deterministic estimate of the clean 3D scene ζ̂0 conditioned on the GOEm-
bed encodings ζenc. While the noise can impart some degree of stochasticity
to the output, the network can, in theory, completely ignore the noise. We let
the network learn what to do based on the training and the data complexity, and
hence call this step �pseudo�-deterministic. This is followed by obtaining a noisy
version of the 3D scene ζ̂t through standard forward di�usion corruption (eq.

5). We estimate the process of drawing from the distribution q(ζ̂t|ζ̂t−1) using

the standard DDPM [25] closed-form equation ζ̂t =
√
αtζ̂0 +

√
1− αtϵ, where ϵ

is pure Gaussian noise and αt denotes the schedule of di�usion. And �nally, we
predict any target observations by rendering the output of the denoiser network
Dθ for ζ̂t conditioned on the GOEmbed encodings ζenc and the timestep t using
eq. 5.

We note here that the network Dθ operates in the x_start di�usion formula-
tion in contrast to the popular epsilon formulation. We require a few di�erent
loss functions to be able to train this pipeline end-to-end such that each compo-
nent does what it is supposed to:

LGOEmbedFusion := Et,otrgt∥otrgt − ôtrgt∥22
LPSE-DET := Et,otrgt∥otrgt −R(g(c, d; ζ̂0)), ϕ

trgt)∥22.

The �nal objective is simply the sum of the three loss functions as,

Ltotal := LGOEmbedFusion + LPSE-DET + LGOEmbed.

The loss function LGOEmbed is required to maximize the information content in
the GOEmbed encodings. In contrast, the LPSE-DET tries to maximize the recon-
struction quality of the pseudo-deterministic output ζ̂0. The LGOEmbedFusion loss
function actually trains the GOEmbedFusion pipeline. As apparent, the GOEm-
bed mechanism enables the GOEmbedFusion model to use any parameterization
of the g function as long as it allows di�erentiable rendering and can de�ne a
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zero-origin over its parameters ζ. Please refer to the supplementary material for
an illustration of the GOEmbedFusion model. Empirically, we found that the
two-step bootstrapped-denoising as done in eqn. 1 and eqn. 5, similar to prior
works [30, 32], is crucial to correctly train this di�usion pipeline in the forward
setting. In practice, we train the model using the classi�er free guidance train-
ing scheme [26], where we dropout the GOEmbed conditioning randomly with
a probability of 0.5, to allow for both conditional and unconditional sampling.
Also, we use the Lighplane [8] renderer for being able to �t the backward pass in
GPU memory. Lastly, samples can be generated by iterative denoising using the
trained model Dθ either unconditionally or conditionally using the GOEmbed en-
codings of certain context observations. Here, we can directly sample (denoise)
in the space of the unobserved underlying data samples ζ, eliminating the need
for the expensive auto-regressive fusion required by DFM.

Table 2: 3D Generation Quantitative Evaluation. FID(↓) and KID(↓) scores
on the OmniObject3D dataset comparing our GOEmbedFusion with GAN baselines
EG3D [10], and GET3D [16]; with the non-forward di�usion baselines Di�RF [45],
Di�TF [9], and Our non-forward di�usion baseline; and, with the DFM (Di�usion with
Forward Model) [66].

Method FID (↓) KID (↓)
EG3D [10] 41.56 1.0
GET3D [16] 49.41 1.5
Di�RF [45] 147.59 8.8
Di�TF [9] 25.36 0.8

DFM [66] 73.51 3.8
Ours non-forward 119.67 8.0

GOEmbedFusion (Ours) 22.12 0.6

As shown in table 2, our GOEmbedFusion sets the new state-of-the-art FID
and KID scores on the OmniObject3D dataset in comparison to the prior state-
of-the-art Di�TF [9], our implementation of a Di�TF like baseline called Ours
non-forward, the DFM [66] model, the Di�RF [45] model, and the prior GANs
EG3D [10] and GET3D [16]. We note that our improvements are not only limited
to the quality of generation, but also to the bene�ts provided by our GOEm-
bedFusion formulation over the vanilla realisation of the DFM (row 5 table 2).
While Di�TF [9] uses many architectural modi�cations and other tricks speci�c
to Triplanes and the OmniObject3D dataset, we only use the base DiT [51] ar-
chitecture with no modi�cations as our backbone denoiser network Dθ. Also our
proposed GOEmbedFusion training pipeline is a di�usion with forward model,
and hence can be trained only using 2D images, unlike Di�TF. Our qualita-
tive samples in �gure 4 further support these arguments. We ran the DFM [66]
baseline using their code, while used the samples for rest of the baselines from
Di�TF [9].
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6 Sparse-View 3D Reconstruction

The Plenoptic Encoding experiments (sec. 4) are in an illustrative setup and
provide insights into how well our propsed GOEmbed can transfer informa-
tion from 2D images into various di�erent 3D representations such as Triplanes,
MLPs and Voxel-Grids. In this section, we aim to evaluate the utility of the
GOEmbeddings in a practical application setup. Thus, although the mathemat-
ical experimental setup is similar to the Plenoptic Encoding one, here we input
the obtained GOEmbeddings to a backbone sparse-view-3D-reconstruction net-
work. Speci�cally, we use the DiT based transformer network, which is 12-layers
wide as the reconstruction backbone. The end-to-end pipeline is supervised with
exactly the same losses as that of the Plenoptic Encoding setup. Intuitively, our
GOEmbed reconstruction model replaces the input learned triplane positional
encodings with our GOEmbeddings and removes the cross-attention layers from
the LRM (Large Reconstruction Model) architecture. Additionally, we also eval-
uate the reconstruction capability of our GOEmbedFusion model by running the
pipeline only till the �pseudo�-deterministic output stage (i.e., eqn. 5).

We compare this transformer-based reconstruction setup of ours to the most
recent baseline of LRM (Large Reconstruction Model) [27], which is also based
on the transformer architecture. Since LRM's code has not been published, we
implement this baseline in our code-base as close to the paper-description as
possible, for a fair comparison. Speci�cally, we train two versions of the LRM,
the �rst one which is 16-layers wide (the base published model), and second
smaller version which is 6-layers wide. We introduced the 6-layers version since
we found the base-model to be over�tting to the OmniObject3D training subset,
which is much smaller in scale than the dataset on which LRM is trained. All
the learned network baselines are evaluated on the ∼ 200 test scenes of the
OmniObject3D dataset while the Triplane-SSO (from the Plenoptic Encoding
section 4) is evaluated on 100 scenes. These 100 SSO scenes form a proper subset
of the test-set, so the comparison here is fair. Please check the supplemental for
more details of our GOEmbed reconstruction architecture.

Table 3: 3D reconstruction Quantitative Evaluation. PSNR(↑), LPIPS(↓) and
SSIM(↓) of our GOEmbed reconstruction model, and GOEmbedFusion's �pseudo�-
deterministic 3D reconstruction output compared to LRM baselines. We again include
the SSO (Single Scene Over�tting) here for comparison.

Method PSNR (↑) LPIPS (↓) SSIM (↑)
LRM (Our) 6 layer 23.788 0.119 0.827
LRM (Our) 16 layer 23.247 0.121 0.813

GOEmbed recon 27.650 0.109 0.900
GOEmbedFusion (PSE-DET) 26.447 0.119 0.890

Triplane SSO 28.165 0.087 0.941
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As summarized in the table 3, both our GOEmbed reconstruction model as
well as the di�usion based GOEmbedFusion model outperforms the LRM base-
lines. Also, our reconstruction model gets quite close to the practical performance
limit as set by the Triplane-SSO experiment. Thus, given these results, we can
assert that our proposed GOEmbeddings generalise to datasets like OmniOb-
ject3D and can strengthen the sparse-view-3D-reconstruction pipelines. Please
refer to the supplemetary material for more details.

7 Limitations, Future Scope, and Societal Impact

Although our framework applies theoretically to any arbitrary 3D Radiance-
Field representations, its use in the 3D generative modeling is restricted by
the representation's compatibility with existing denoiser network architectures.
We believe that Transformers [67] get close to being universally applicable, but
it still remains a challenge to adapt certain 3D representations such as Hash-
grids [46] as input to Transformers. Nevertheless, we believe that our proposed
GOEmbed mechanism makes a substantial research stride and will inspire fur-
ther interesting applications and theoretical insights. Apart from this, upon close
qualitative examination, we �nd that the samples generated using our GOEm-
bedFusion model have some peculiar checkerboard artifacts (refer to the supple-
mentary material). Similar to the �ndings of the recent Denoising-ViT [81], we
hypothesize that these artifacts in our model are also because of the positional
encodings in the DiT architecture. Finding the exact reason for these artifacts
and getting rid of them constitutes a future direction to be pursued.

Although our proposed method primarily contributes to extracting 3D fea-
tures from 2D Images, as shown in our 3D generation experiments, the 3D fea-
tures extracted from our method could be applied in the context of the generative
modeling of real-captured or synthetic 3D assets. Hence, similar to the case of
2D generative models, our proposed GOEmbedFusion model is also prone to the
misuse of the synthetically generated media. We note that there is a potential
for our method to be used in the creation of fake 3D-consistent videos.

8 Conclusion

We presented the GOEmbed as a mechanism for encoding the information in
2D images into arbitrary 3D scene representations and evaluated its information
transfer ability with the Plenoptic Encoding experiments. We show that the
encodings can be applied to Triplanes, Voxel-grids and MLPs, but note that
exploring these in the context of other popular 3D representations (e.g., meshes,
point clouds) forms scope for future work. The GOEmbeddings �nd practical
usefulness in the context of improving the framework of DFM models, which
we demostrate through the 3D generation experiments on the OmniObject3D
benchmark; and in the context of sparse-view 3D reconstruction as well.
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