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Abstract. A common practice in deep learning involves training large neural net-
works on massive datasets to achieve high accuracy across various domains and
tasks. While this approach works well in many application areas, it often fails
drastically when processing data from a new modality with a significant distribu-
tion shift from the data used to pre-train the model. This paper focuses on adapt-
ing a large object detection model trained on RGB images to new data extracted
from IR images with a substantial modality shift. We propose Modality Translator
(ModTr) as an alternative to the common approach of fine-tuning a large model to
the new modality. ModTr adapts the IR input image with a small transformation
network trained to directly minimize the detection loss. The original RGB model
can then work on the translated inputs without any further changes or fine-tuning
to its parameters. Experimental results on translating from IR to RGB images on
two well-known datasets show that our simple approach provides detectors that
perform comparably or better than standard fine-tuning, without forgetting the
knowledge of the original model. This opens the door to a more flexible and effi-
cient service-based detection pipeline, where a unique and unaltered server, such
as an RGB detector, runs constantly while being queried by different modalities,
such as IR with the corresponding translations model. Our code is available at:
https://github.com/heitorrapela/ModTr.
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1 Introduction

Powerful pre-trained models have become essential in the field of computer vision,
particularly in object detection (OD) tasks [31,32]. These OD models are typically pre-
trained on extensive natural-image RGB datasets, such as COCO [28]. Moreover, the
knowledge encoded by these models can be leveraged for various tasks in a zero-shot
way or with additional fine-tuning for downstream tasks [43]. However, adding new
modalities to these models, such as infrared (IR), without losing the intrinsic knowledge
of the detector remains a challenge [29].
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Fig. 1: Bounding box predictions over different adaptations of the RGB detector (Faster R-CNN)
for IR images on two benchmarks: LLVIP and FLIR. Yellow and red boxes show the ground
truth and predicted detections, respectively. In a) we see the RGB data. In b) FastCUT is an
unsupervised image translation approach that takes as input infrared images (IR) and produces
pseudo-RGB images. It does not focus on detection and requires both modalities for training. In c)
we have fine-tuning, which is the standard approach to adapting the detector to the new modality.
It requires only IR data but forgets the original knowledge of the original RGB detector. Finally,
in d) is the ModTr, which focuses the translation on detection, requires only IR data and does not
forget the original knowledge so that it can be reused for other tasks. Bounding box predictions
for other detectors are provided in the supplementary material.

These additional modalities, though not as common as RGB images, are still impor-
tant in various tasks, like surveillance [5,8], autonomous driving [33,41], and robotics [23,
38], which strive to achieve robust performance in real-world environments, where cap-
ture conditions change, such as different illumination conditions [2]. The dominant way
to adapt pre-trained detectors to these novel conditions is by fine-tuning the model [29].
However, fine-tuning often results in catastrophic forgetting and can destroy the in-
trinsic knowledge of the detector [25]. Ideally, we would like to adapt the detector to
new modalities without changing the original model. This is most useful for server-side
applications, where a single model runs uninterrupted and can be queried by different
inputs, ideally on different modalities. The main challenge lies in the significant distri-
bution shift introduced by the new modality. This shift occurs because the pre-trained
knowledge, such as the visual information in RGB images, differs markedly from the
thermal data in IR images. This shift can degrade model performance when applied
directly as input to the model, since the features learned from one modality may not
be relevant or present in another. This can ultimately impact the resulting OD perfor-
mance [44].

Image translation methods [35, 36] have emerged as powerful tools to overcome
the downsides of fine-tuning and narrowing the gap between source and target modal-
ities [17]. These methods do not directly work on the weight space of the original de-
tector but rather adapt the input values to reduce the discrepancy between the source
and target modalities. However, such methods often require access to source data or
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Fig. 2: Different approaches to deal with multiple modalities and/or domains. (a) The simplest
approach is to use a different detector adapted to each modality. This can lead to a high level of
accuracy but requires storing several models in memory. (b) Our proposed solution uses a single
pre-trained model normally trained on the more abundant data (RGB) and then adapts the input
through our ModTr model. (c) A single detector is jointly trained on all modalities. This allows
using of a single model but requires access to all modalities jointly, which is often impossible,
especially when dealing with large pre-trained models.

some statistics about it during training. Furthermore, their primary focus is on image
reconstruction quality rather than the final OD task, which can cause a significant drop
in performance. For instance, Figure 1 shows different ways to adapt the RGB detector
(see the caption for more details).

Our work aims to improve the image translation paradigm while addressing its lim-
itations. Our proposed approach, Modality Translation for OD (ModTr), incorporates
the detector’s knowledge into the translation module by training directly for the final
detection task. Unlike traditional image translation methods, ModTr does not require
any source data. It is a conceptually simple approach that can be easily integrated with
any detector, be it a one-stage or two-stage detector. A notable application of ModTr is
using a pre-trained RGB detector as a server that incorporates different ModTr blocks
as input translators for new modalities such as IR. This new detector generates the de-
sired output with performance comparable to full fine-tuning without losing the original
knowledge of the pre-trained model. In Fig. 2, we present several options for integrat-
ing IR modalities into an RGB system. Fig. 2a illustrates the N-Detectors approach,
where each detector is trained for a specific case. This method effectively demands
more memory and forgets previously learned information. Fig. 2c shows a single de-
tector trained on combined modalities. This method does not incur additional memory,
yet it requires simultaneous access to all modalities, which may not always be feasible.
Fig. 2b illustrates our proposed approach, which involves training a specialized trans-
lator for each condition without altering the parameters of the original detector. The
N-ModTr-1-Detector strikes a balance between the previous methods, addressing their
shortcomings by requiring only a single detector. Importantly, it retains the original
pre-training knowledge, as it leaves the detector unchanged. In this work, we focus on
the effectiveness of our approach for the IR modality, commonly used in surveillance
and robotics, and the incremental modality detector server-based application, which is
crucial for many settings that require uninterrupted detection predictions.
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Our main contributions can be summarized as follows.
(1) We present ModTr, a method for adapting pre-trained ODs from large RGB datasets
to new scarce modalities like IR, without requiring access to any source dataset, by
translating the input signal.
(2) In contrast to standard fine-tuning, our approach does not modify the original detec-
tor weights. This allows the detector to retain the knowledge of the source data while
adapting to a new modality. As a result, a single model can be used to handle multiple
modalities across various translators. For instance, the same model can be used to pro-
cess RGB during the daytime and IR at nighttime.
(3) An extensive empirical evaluation of ModTr in several scenarios, showcasing its
advantages and flexibility. In particular, with our different proposed fusion strategies,
ModTr achieves OD accuracy that is competitive when compared with image transla-
tion methods on two challenging RGB/IR datasets (LLVIP and FLIR).

2 Related Work

(a) Object Detection. OD is a computer vision task that aims to provide labels and lo-
calization for the objects in the image [47]. Two-stage detectors, exemplified by Faster
R-CNN [39], generate regions of interest and then use a second classifier to confirm
object presence within those regions. On the other hand, one-stage detectors streamline
the detection process by eliminating the proposal generation stage, aiming for end-to-
end training and real-time inference speeds. RetinaNet [27] is a one-stage OD model
that utilizes a focal loss function to address class imbalance during training. Also, mod-
els like FCOS [42] have emerged in this category, eliminating predefined anchor boxes
to potentially enhance inference efficiency. The proposed work investigates these three
traditional and powerful detectors: Faster R-CNN, RetinaNet, and FCOS. The choice
of such detectors was due to the simplicity in implementation and integration among
other methods, as well as a different range of pre-trained backbone weights, such as
ResNet [13] and MobileNet [15].
(b) Image Translation. Image translation is a pivotal task in computer vision, aiming
to map images from a source domain to a target domain while preserving inherent con-
tent [35]. The goal is to discover a transformation function such that the distribution of
images in the translated domain is aligned with the distribution of images in the target
domain. The commonly used approaches for image translation are based on variational
autoencoders (VAEs) [24] and generative adversarial network (GANs) [11, 35]. Isola
et al. developed the Pix2Pix [21], a method that consists of a generator (based on U-
Net) and a discriminator (based on GANs architecture) that work together to generate
images based on input data and labels. Then, Zhu et al. proposed a method called Cycle-
GAN [50], which is based on GANs, with the objective of unsupervised domain trans-
lation. Even though CycleGAN can produce quite visual results, it’s hard to optimize
due to the adversarial mechanism and memory footprint needed. In contrast, VAEs are
easier to train than GANs but require more constraints in the optimization to produce
images of good quality than GAN-based approaches. Recent advancements include dif-
fusion models known for their high-quality image generation, although they may not
inherently suit domain translation tasks. To enhance models such as CycleGAN, novel
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methods like Contrastive Unpaired Translation (CUT) [36] and FastCUT [36] have been
introduced. CUT, in particular, accelerates the image translation process by maximiz-
ing mutual information between image patches, achieving competitive results quickly.
In the context of RGB/IR modality, InfraGAN presents an image-level adaptation for
RGB to IR conversion, prioritizing image quality [34]. This approach is distinct in its
focus on optimizing image quality losses. Moreover, Herrmann et al. have explored OD
in RGB/IR modality by adapting IR images to RGB using traditional image prepro-
cessing techniques, allowing the use of RGB object detectors without parameter modi-
fication [14]. Despite significant advances in image translation, these techniques do not
specifically address OD tasks. In our previous work, we introduced HalluciDet [29],
which employs an image translation mechanism for OD. However, this approach re-
quires prior access to the source RGB data from the same domain as the target for
pre-training the detector.
(c) Adapting Without Forgetting. Catastrophic forgetting (CF) is the idea that a neu-
ral network tends to forget knowledge when sequentially trained on a different task
and replaces it with knowledge tailored to the new objective [45]. CF can be harmful
or beneficial. Researchers identified harmful learning as situations where retaining the
original knowledge while adapting to a different task is necessary. In that case, it is
imperative to mitigate the risk of CF. However, some CF can also be beneficial, for
instance, to prevent privacy leakage from large pre-trained models, to enhance the gen-
eralization, or to remove noisy information from the originally, acquired knowledge
that is negatively affecting the new tasks. In our case, knowledge-forgetting is harmful.
There are different ways to address this issue including simple techniques like decreas-
ing the learning rate [16], use weight decay [4,49] or mixout regularization [26] during
fine-tuning or more complex approaches like Recall and learn [6], Robust Information
Fine-tuning [46] or CoSDA [10]. Some adaptation methods use techniques based on
replay of the source data or even using the weights of the initial model to keep some
prior information [30]. Some of these works focus on adding continually different tasks
in an incremental learning setting. However, these methods may still produce a loss of
knowledge since the original parameters are not frozen. Furthermore, in adapting with-
out forgetting, an adapter, which adopts a frozen pre-trained backbone to generate a
representation followed by a different classifier for each downstream task [45], can be
seen as a powerful method to preserve knowledge. Even though our ModTr shares some
similarities, we work in the input space to adapt to the new modalities, and address this
incremental modality adaptation, optimizing the translation directly for the final OD
task.

3 Proposed Method

(a) Preliminary Definitions. The training set for OD is denoted as D = {(x, Y )},
where x ∈ RW×H×C represents an image in the dataset, with dimensions W × H
and C channels. Subsequently, the OD model aims to identify N regions of interest
within these images, denoted as Y = {(bi, ci)}Ni=1. The top-left corner coordinates
and the width and height of the object define each region of interest bi. Additionally, a
classification label ci is assigned to each detected object, indicating its corresponding
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class within the dataset. In this study, the number of input channels for the detector is
fixed at three, corresponding to RGB-like inputs. In terms of optimization, the primary
goal of this task is to maximize detection accuracy, often measured using the average
precision (AP) metric across all classes. An OD is formally represented as the mapping
fθ : RW×H×C → Ŷ , where θ denotes the parameter vector. To effectively train a
detector, a differentiable surrogate for the AP metric, referred to as the detection cost
function, Cdet(θ), is employed. The typical structure of such a cost function involves
computing the average detection loss over dataset D, denoted as Ldet, described as:

Cdet(θ) =
1

|D|
∑

(x,Y )∈D

Ldet(fθ(x), Y ). (1)

(b) Modality Translation Module. Our approach primarily consists of an image-to-
image translation network responsible for converting the input modality into an RGB-
like space intelligible to the detector. These networks typically adopt an encoder-decoder
structure to synthesize and reconstruct knowledge in a pixel-wise manner. While we
employ U-Net [40] as the translation network, with parameters ϑ, in this work, our
framework is general and not limited by the translation architecture. In general terms,
this mapping is denoted as hd

ϑ : RW×H×C → RW×H×3, with a translation network as-
signed to each available input modality d. Unlike the detection network, the number of
input channels varies depending on the modality, for instance, C = 1 for IR and depth
images. It’s important to note that, being a pixel-level architecture, the output of such
a network retains the spatial resolution of the input. However, the number of output
channels is consistently fixed at three, corresponding to RGB-like images (C = 3).

Unlike other image-to-image translation approaches, we drive the process using the
aforementioned detection cost (Equation (1)). Thus, the underlying optimization prob-
lem is formulated as ϑ∗ = argminLdet(ϑ), incorporating the output of the composition
(fθ ◦ hd

ϑ)(x) at the loss function level. To streamline the learning process, we utilize a
residual learning strategy in which the function hd

ϑ focuses on capturing the small varia-
tions in the input that are necessary to solve the task. This approach is similar to the one
employed on diffusion models, which inspired our work. For the sake of simplicity, we
separate the fusion step from the translation mapping in our notation, as various types
of fusion are investigated. Consequently, the proposed image-to-image translation loss
function is defined as:

LModTr(x, Y ;ϑ) = Ldet(fθ
(
Φ(hd

ϑ(x), x)
)
, Y ), (2)

where Φ(., .) is a non-parametric fusion function. Note that the output of hd
ϑ(x) is an

RGB-like image, whereas x may only consist of a single channel, depending on the
input modality. We have chosen this definition to simplify the notation, but appropriate
reshaping should be performed during implementation to ensure compatibility.

In addition, note that, while a detection loss is employed to update the translation
network, the weight vector θ remains constant. This constraint is consistent with the
premise of this study, where a pre-trained detector is solely available on the server side
and remains unaltered. An overview of the proposed approach can be seen in Fig. 2 b).
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(c) Fusion strategy. As previously mentioned, we utilize a non-parametric fusion of
the intermediate representation hd

ϑ(x) and the original input x to simplify the learn-
ing process of the translation network. In this context, we employ an element-wise
product, also known as the Hadamard product, which is particularly interesting for at-
tention mechanisms and has been explored previously for re-calibrating feature maps
based on their importance [19]. Although we investigated various fusion mechanisms,
the element-wise product yielded the best results. For more details on different fusion
strategies, please refer to supplementary materials.
ModTr⊙: The Hadamard product-based fusion serves as a gating mechanism to filter
or highlight information from the input image. In this approach, the output of the trans-
lation network acts as a weight map for the input, and they are fused using pixel-wise
multiplication, ⊙. Consequently, the translation network tends to highlight information
from the input when the pixel value tends toward 1 or discard it when it approaches 0.
Additionally, the output translation modality can be interpreted as an attention map, as
described by the following Equation (3):

LModTr⊙(x, Y ;ϑ) = Ldet(fθ
(
hd
ϑ(x)⊙ x

)
, Y ). (3)

In our design choices, we opt to utilize these straightforward non-parametric func-
tions to assist in optimization while maintaining low inference costs.

4 Results and Discussion

4.1 Experimental Methodology

(a) Datasets: LLVIP: LLVIP is a surveillance dataset composed of 30, 976 images,
in which 24, 050 (12, 025 IR and 12, 025 RGB paired images) are used for training
and 6, 926 for testing (3, 463 IR and 3, 463 RGB paired images) with only pedestrians
annotated. FLIR ALIGNED: We used the sanitized and aligned paired sets provided by
Zhang et al. [48]. It has 10, 284 images, that is 8, 258 for training (4, 129 IRs and 4, 129
RGBs) and 2, 026 (1, 013 IRs and 1, 013 RGBs) for test. FLIR images are captured
from the perspective of a camera in the front of a car, with a resolution of 640 by 512. It
contains the bicycles, dogs, cars, and people classes. It has been found that with FLIR,
the "dog" objects are inadequate for training [3], thus we decided to remove them.

(b) Implementation details: In our experiments, we randomly selected 80% of the
training set for training and the rest for validation. All results reported are on the test
set. As starting pre-trained weights for the detectors, we used Torchvision models with
COCO [28] weights and for the U-Net translation network, we used PyTorch Segmenta-
tion Models [20] and we changed the last layer for 3-channel (RGB-like) with a Sigmoid
function, to be closer to an image with values between 0 and 1, to perform translation
instead of traditional segmentation. For the translation network backbones, we explored
our default ResNet34, and for subsequent studies on reducing parameters, we dive into
ResNet and MobileNet-family. All the code is available on GitHub for reproducibility
in the experiments. To ensure fairness, we trained the detectors under the library version
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and the same experimental design, i.e., data order, augmentations, etc. Furthermore, we
trained with PyTorch Lightning [9] training framework, evaluated the APs with Torch-
Metrics [7], and logged all experiments with WandB [1] logging tool. The different
performance measures (e.g., APs) can be found in suppl. materials.

4.2 Comparison with Translation Approaches

In this section, ModTr is compared with different image-to-image translation methods
employing different learning strategies. These include basic image processing strategy
[14], reconstruction strategies such as CycleGAN [51], CUT [37], and FastCUT [37],
which employs a contrastive learning approach, as well as HalluciDet [29], which uti-
lizes a detection-based loss. As outlined in Table 1, we evaluated the methods based on
their final detection performance across three commonly used detectors: FCOS, Reti-
naNet, and Faster R-CNN. The reported results are derived from the IR test set and
are averaged over three different seeds, which helps mitigate the impact of randomness
across runs and splits of the training and validation datasets.

For each method, we also consider its dependency on the prior knowledge data
(RGB) and ground truth bounding boxes (bboxes) on the IR images. Methods that rely
on reconstruction techniques do not require bbox annotations on IR images but cannot
provide accurate translations for detection purposes. However, HalluciDet and ModTr
require bbox annotations to adjust the input image in a discriminative manner. The
main difference between HalluciDet and ModTr is the use of source images. HalluciDet
requires RGB images for an initial fine-tuning of the model, while our approach can
work without that fine-tuning by reusing the detector’s zero-shot knowledge.

The proposed ModTr displays robustness across the three detectors and consistently
exhibits improvement on two different datasets: LLVIP [22] and FLIR aligned [12].
Note that each algorithm described in Table 1 employs different training supervisions.
For instance, CycleGAN employs an adversarial mechanism with both RGB and in-
frared modalities in an unpaired setting. Similarly, CUT and FastCUT operate with
positive and negative patches in an unpaired setting. In contrast, HalluciDet doesn’t
require the presence of both modalities during training but employs a detection mecha-
nism during training similar to ours. In our approach, we solely require examples from
the target modality. In this section, we present the performance of our best approach
ModTr⊙. For additional results, refer to suppl. materials.

As reported in Table 1, the detection performance of ModTr over the LLVIP dataset
exhibited significant improvements. Specifically, it surpassed HalluciDet, the second
best, by more than 29.0 AP with both FCOS and RetinaNet architectures, while obtain-
ing comparable results with Faster R-CNN. Such disparity with the previous technique
can be attributed to the loss of previous knowledge inherent in HalluciDet, which ne-
cessitates a pre-fine-tuning strategy on the source modality. Although the performance
of the FLIR dataset also improved, the dataset’s inherent challenges, such as changing
the background from a moving car setup, make detection more difficult. Nonetheless,
our proposal consistently enhances results, with improvements of more than 11 AP for
FCOS and RetinaNet, and over 7 AP for Faster R-CNN. We also observed improve-
ments on the AP50 and AP75. Because of the space constraint, we include these in
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Table 1: Detection performance (AP) of ModTr versus baseline image-to-image methods to
translate the IR to RGB-like images, using three different detectors (FCOS, RetinaNet, and Faster
R-CNN). The methods were evaluated on IR test set of LLVIP and FLIR datasets. The RGB col-
umn indicates if the method required access to RGB images during training, and Box refers to
the use of ground truth boxes during training.

Image translation RGB Box
Test Set IR (Dataset: LLVIP)

FCOS RetinaNet Faster R-CNN

Histogram Equal. [14] 31.69 ± 0.00 33.16 ± 0.00 38.33 ± 0.02
CycleGAN [51] ✓ 23.85 ± 0.76 23.34 ± 0.53 26.54 ± 1.20
CUT [37] ✓ 14.30 ± 2.25 13.12 ± 2.07 14.78 ± 1.82
FastCUT [37] ✓ 19.39 ± 1.52 18.11 ± 0.79 22.91 ± 1.68
HalluciDet [29] ✓ ✓ 28.00 ± 0.92 19.95 ± 2.01 57.78 ± 0.97

ModTr⊙ (ours) ✓ 57.63 ± 0.66 54.83 ± 0.61 57.97 ± 0.85

Image translation RGB Box
Test Set IR (Dataset: FLIR)

FCOS RetinaNet Faster R-CNN

Histogram Equal. [14] 22.76 ± 0.00 23.06 ± 0.00 24.61 ± 0.01
CycleGAN [51] ✓ 23.92 ± 0.97 23.71 ± 0.70 26.85 ± 1.23
CUT [37] ✓ 18.16 ± 0.75 17.84 ± 0.75 20.29 ± 0.48
FastCUT [37] ✓ 24.02 ± 2.37 22.00 ± 2.73 26.68 ± 2.59
HalluciDet [29] ✓ ✓ 23.74 ± 2.09 22.29 ± 0.45 29.91 ± 1.18

ModTr⊙ (ours) ✓ 35.49 ± 0.94 34.27 ± 0.27 37.21 ± 0.46

supplementary materials. These promising results indicate that our proposal can effec-
tively translate images from the original IR modality to an RGB-like representation,
sufficiently close to the source data to be usable by the detector.

4.3 Translation vs. Fine-tuning

In this section, we further show that the proposed approach can be trained jointly with
both translation and detector, which preserves the detector’s knowledge. Here, ModTr
is compared to three baselines fully fine-tuning (FT), FT of the head and LoRA [18],
and our best ModTr fusion strategy, as shown in Tab. 2.

We conduct LoRA fine-tuning using two settings. In the first, we apply LoRA across
all layers; in the second, only to the last layer of detectors. The latter results in superior
performance, so we have adopted it as our default LoRA setting. The Tab. 2 shows AP
for the LLVIP and FLIR datasets, with a consistent trend across all detectors (FCOS,
RetinaNet, and Faster R-CNN). Furthermore, in the case of the FLIR dataset, we ob-
served enhancements of ModTr over the standard detector FT. As demonstrated, our
approach surpasses standard fine-tuning while maintaining the detector’s performance
in the original modality. It is worth noting that our method also improves performance
in terms of localization metrics such as AP50 and AP75 compared to fine-tuning alone,
and we provide detailed results in the supplementary materials.
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Table 2: Detection performance (AP) of ModTr versus baseline fine-tuning (FT) of the detector,
FT of the head and LoRA [18], using three different detectors (FCOS, RetinaNet, and Faster R-
CNN. The methods were evaluated on IR test set of LLVIP and FLIR datasets. Results with "-"
diverged from the optimization.

Method
Test Set IR (Dataset: LLVIP)

FCOS RetinaNet Faster R-CNN

Fine-Tuning (FT) 57.37 ± 2.19 53.79 ± 1.79 59.62 ± 1.23
FT Head 49.11 ± 0.70 44.00 ± 0.28 59.33 ± 2.17
LoRA [18] 47.72 ± 0.58 - 54.83 ± 1.30

ModTr⊙ (ours) 57.63 ± 0.66 54.83 ± 0.61 57.97 ± 0.85

Method
Test Set IR (Dataset: FLIR)

FCOS RetinaNet Faster R-CNN

Fine-Tuning (FT) 27.97 ± 0.59 28.46 ± 0.50 30.93 ± 0.46
FT Head 27.40 ± 0.12 26.78 ± 0.70 33.53 ± 0.36
LoRA [18] - - 29.44 ± 0.61

ModTr⊙ (ours) 35.49 ± 0.94 34.27 ± 0.27 37.21 ± 0.46

4.4 Different Backbones for ModTr

In this context, we evaluate ModTr and examine the trade-off between performance
and parameter cost. It is widely recognized that increasing the number of parameters
can enhance performance, but this relationship is not strictly linear. We demonstrated
that models with fewer parameters can still achieve good performance; for example,
MobileNetv2, with fewer parameters than ResNet18, sometimes outperformed it. This
trade-off highlights the versatility of the model, which can be deployed with MobileNet-
based architectures and utilized in low-cost devices. In Table 3, the default number of
parameters is successfully reduced from 24.4M (ResNet34) to 6.6M using MobileNetv2
while maintaining similar performance. For instance, on LLVIP, MobileNetv2 achieved
a mean AP of 56.15, comparable to 56.35 AP50 from ResNet34 (others APs and detec-
tors are reported in the supplementary material).

This approach opens up new possibilities, particularly in scenarios where using one
translation network and one detector (e.g., one ModTr and one detector for RGB/IR)
proves advantageous. This setup requires a total of 44.9M parameters, compared to
83.6M parameters, when employing two detectors—one for each modality (for exam-
ple, for Faster R-CNN). Similar reductions in parameter costs were observed for FCOS
(from 66.4M to 36.3M) and RetinaNet (from 68M to 37.1M) when using one detector
for both modalities while preserving the knowledge of the previous modality and incor-
porating a new one. These numbers are based on MobileNetv3s, which strikes a balance
between performance and the number of parameters, making it suitable for memory-
restricted systems. The complete evaluations for FCOS and RetinaNet are included in
the supplementary material.
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Table 3: Detection performance (AP) of ModTr with different backbones for the translation net-
works with different numbers of parameters, using three different detectors (FCOS, RetinaNet,
and Faster R-CNN). The methods were evaluated on IR test set of LLVIP and FLIR datasets.

Test Set IR (Dataset: LLVIP)

Method Parameters AP ↑

Faster R-CNN 41.8 M

MobileNetv3s + 3.1 M 54.51 ± 0.28
MobileNetv2 + 6.6 M 56.15 ± 0.51
ResNet18 + 14.3 M 55.53 ± 1.14
ResNet34 + 24.4 M 56.35 ± 0.65

Test Set IR (Dataset: FLIR)

Faster R-CNN 41.8 M

MobileNetv3s + 3.1 M 32.06 ± 0.75
MobileNetv2 + 6.6 M 36.77 ± 0.67
ResNet18 + 14.3 M 36.68 ± 0.22
ResNet34 + 24.4 M 37.21 ± 0.46

4.5 Knowledge Preservation through Input Modality Translation

ModTr is designed to prevent catastrophic forgetting by keeping the weights of the pre-
trained detector fixed. In this section, we demonstrate how various adaptation paradigms,
shown in Figure 2, effectively solve the final task while preserving intrinsic knowledge.
We compare our proposed method, ModTr, with two fine-tuning baseline methods. The
first baseline method involves N-detectors, each fine-tuning the target modality indi-
vidually. The second baseline method employs a single detector trained on the joint
modality using balanced sampling. Note that while a copy of the original detector can
be used in the N-detectors paradigm, it is unavailable in the 1-detector paradigm be-
cause the original modality is assumed to be inaccessible during training.

In all scenarios, we use COCO as the pre-training dataset and LLVIP and FLIR
as target domains. Specifically, in the N-detectors scenario (Fig.2a), we fine-tune one
detector on each dataset and use a copy of the original detector for the RGB modality.
In the 1-detector scenario (Fig.2c), we fine-tune one detector on the combined FLIR
and LLVIP datasets. In the N-ModTr-1-Detector scenario (Fig.2b), two translators are
trained, one per dataset. To assess catastrophic forgetting, we re-evaluate each scenario
on COCO-val.

Table 4 shows the final performance. While all adaptation paradigms achieve rela-
tively similar performance, the 1-detector method completely fails in the zero-shot sce-
nario. The N-detectors method mitigates this by duplicating the detector three times. In
contrast, ModTr preserves knowledge using a single detector and three efficient trans-
lators, demonstrating its practicality for embedded devices, as it requires less memory.
Based on the average performance on all datasets, ModTr obtains the best results.
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Fig. 3: Illustration of a sequence of 8 images of LLVIP and FLIR dataset for Faster R-CNN.
For each dataset, the first row is the RGB modality, followed by the IR modality and different
representations created by ModTr. For visualizations of other detectors and variants of ModTr,
please refer to the supplementary materials.

4.6 Visualization of ModTr Translated Images

In Figure 3, we present qualitative results for LLVIP and FLIR, alongside a compar-
ison with fine-tuning. Each dataset section includes three rows: the first row displays
the ground-truth RGB images, the second row showcases the results of fine-tuning us-
ing IR, and the last row features ModTr with a Hadamard product-based fusion over
the Faster R-CNN detector. Due to space constraints, additional visualizations for other
detectors and fusion strategies are provided in the supplementary materials. Notably,
the IR results exhibit some false positives, particularly when detected objects overlap.
Our method mitigates this issue effectively. Further insights, provided in the supple-
mentary materials, reveal how our method effectively blurs or removes objects that do
not belong to the target classes, thereby enhancing detection accuracy. Although the ob-
tained intermediate representations are not visually pleasant, they prove more efficient
for incorporating the knowledge necessary for the OD. Additionally, we conducted ex-
periments with loss function terms aimed at enhancing the visual effects of the image,
but they were not conclusive in terms of helping the detection performance.
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Table 4: Detection performance (AP) of knowledge preserving techniques N-Detectors, 1-
Detector, and N-ModTr-1-Detector, using three different detectors (FCOS, RetinaNet, and Faster
R-CNN). The methods were evaluated on COCO and IR test sets of LLVIP and FLIR datasets.

Detector Dataset N-Detectors 1-Detector N-ModTr-1-Det.

FCOS
LLVIP 57.37 ± 2.19 58.55 ± 0.89 57.63 ± 0.66
FLIR 27.97 ± 0.59 26.70 ± 0.48 35.49 ± 0.94
COCO 38.41 ± 0.00 00.33 ± 0.04 38.41 ± 0.00

AVG. 41.25 ± 0.92 28.52 ± 0.47 43.84 ± 0.53

RetinaNet
LLVIP 53.79 ± 1.79 53.26 ± 3.02 54.83 ± 0.61
FLIR 28.46 ± 0.50 25.19 ± 0.72 34.27 ± 0.27
COCO 35.48 ± 0.00 00.29 ± 0.01 35.48 ± 0.00

AVG. 39.24 ± 0.76 26.24 ± 1.28 41.52 ± 0.29

Faster R-CNN
LLVIP 59.62 ± 1.23 62.50 ± 1.29 57.97 ± 0.85
FLIR 30.93 ± 0.46 28.90 ± 0.33 37.21 ± 0.46
COCO 39.78 ± 0.00 00.40 ± 0.00 39.78 ± 0.00

AVG. 43.44 ± 0.56 30.60 ± 0.54 44.98 ± 0.43

4.7 Fine-tuning of ModTr and the Detector

The main reason to use ModTr is to avoid fine-tuning the detector for a specific task
so that it can preserve its knowledge and be used for multiple modalities. However, in
this section, we consider what would happen if we learn jointly ModTr and the detector
weights. Results are reported in Figure 4. We see that fine-tuning the detector can further
boost performance. Thus, another application of ModTr could be used to improve the
fine-tuning of a detector with a reduced additional computational cost.

FCOS RetinaNet FasterRCNN
0

10

20

30

40

AP

FLIR dataset

Fine-Tuning ModTr¯ ModTr¯+FT

Fig. 4: Comparison of the performance of fine-tuning the ModTr and normal fine-tuning on the
FLIR dataset for the three different detectors (FCOS, RetinaNet, and Faster R-CNN). In blue, the
Fine-tuning; in orange, the ModTr⊙, and in green, ModTr⊙ + FT.
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5 Conclusion

In this paper, a novel method called ModTr is proposed for adapting RGB object de-
tectors (ODs) for IR modality without changing their parameters. A key advantage of
our approach is that it preserves the full knowledge of the detector, allowing the trans-
lation network to act as a node that changes the modality for an unaltered detector. This
is much more flexible and computationally efficient than having a specialized OD for
each modality. Our approach performs well in various settings, outperforming powerful
image-to-image models and previous competitors. We evaluated ModTr for different
tasks, including detection based on image translation, comparison with traditional fine-
tuning, and incremental IR modality application. Experimental results show the high
performance and versatility of our method in all these settings.

Additionally, to explore integrating modalities beyond IR, we applied ModTr to
Canny edges extracted from IR images as detailed in the supplementary material. While
ModTr significantly enhances the performance of zero-shot RGB OD on edges, it still
does not match the effectiveness of full fine-tuning on this other modality. We believe
this shortfall arises from the limited information provided by edges compared to the
richer data in the IR modality, leading to lower initial zero-shot OD performance. A
potential solution is to replace the deterministic translator module within ModTr with
a generative model. This substitution could enrich modality information by generat-
ing the missing data, potentially improving the zero-shot detector’s performance. This
promising direction will be explored in future research.
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