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Abstract. Self-supervised learning (SSL) is a popular paradigm for
representation learning. Recent multiview methods can be classified as
sample-contrastive, dimension-contrastive, or asymmetric network-based,
with each family having its own approach to avoiding informational col-
lapse. While these families converge to solutions of similar quality, it can
be empirically shown that some methods are epoch-inefficient and require
longer training to reach a target performance. Two main approaches to
improving efficiency are covariance eigenvalue regularization and using
more views. However, these two approaches are difficult to combine due
to the computational complexity of computing eigenvalues. We present
the objective function FroSSL which reconciles both approaches while
avoiding eigendecomposition entirely. FroSSL works by minimizing co-
variance Frobenius norms to avoid collapse and minimizing mean-squared
error to achieve augmentation invariance. We show that FroSSL reaches
competitive accuracies more quickly than any other SSL method and
provide theoretical and empirical support that this faster convergence is
due to how FroSSL affects the eigenvalues of the embedding covariance
matrices. We also show that FroSSL learns competitive representations
on linear probe evaluation when used to train a ResNet18 on several
datasets, including STL-10, Tiny Imagenet, and Imagenet-100. Github

1 Introduction

The problem of learning representations without human supervision is funda-
mental in machine learning. Unsupervised representation learning is particu-
larly useful when label information is difficult to obtain or noisy. It requires
the identification of structure in data with limited knowledge about what the
structure is. One common way of learning structure without labels is joint em-
bedding self-supervised learning (SSL) [4; 5; 14; 16; 17; 24; 33; 36]. The basic
goal of SSL is to train neural networks to capture semantic input features that
are augmentation-invariant. This goal is appealing for representation learning
because the inference set often has similar semantic content to the training set.
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Fig. 1: The SSL pipeline used in this work. In general, the encoder and projector
may be asymmetric. We use symmetric encoders with shared weights and the same
augmentation set for each view. We refer to X1 as view 1 of X, and X2 as view 2. Only
two views are shown here, though more may be used in practice.

A trivial solution to learning augmentation-invariant features is to encode
all images to the same point, often called trivial or informational collapse. The
resulting networks are essentially useless for downstream tasks. Different mech-
anisms have been proposed to handle collapse in SSL. These can be grouped
into three families: sample-contrastive, dimension-contrastive, and asymmetric
network methods.

A less studied problem in all current SSL methods is their speed of conver-
gence. When compared to traditional supervised learning, SSL methods must
be trained for large numbers of iterations to reach competitive performance on
downstream tasks. For example, a typical experiment in the literature is to train
for 1000 epochs on ImageNet which can take several weeks even with many
GPUs. An imperative direction of research is to investigate how to reduce SSL
training time. An observation that is often hidden by only reporting the final
epoch accuracy is that, empirically, certain SSL methods require more training
time to reach competitive accuracies. This phenomenon has been observed for
many dimension-contrastive methods by Simon et al . [27] but not discussed in
detail. We provide additional support for this claim in Section 4.1. Our work
attempts to answer the following research question: Does there exist an SSL
method with dimension-contrastive advantages, namely simplicity via avoidance
of both negative sampling and architectural restrictions, while achieving com-
petitive accuracies more quickly than other existing SSL methods?

We propose an SSL objective which we call FroSSL. Similar to many dimension-
contrastive methods, FroSSL consists of a variance and invariance term. The
invariance term is simply a mean-squared error between the views and is iden-
tical to VICReg’s invariance term [1]. The variance term is the logarithm of the
squared Frobenius norm of the normalized covariance embedding matrices. Using
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the Frobenius norm of covariance matrices for improving learned representations
has not been explored in SSL.

Our contribution can be summarized as:

– We introduce the FroSSL objective function and show that it is both dimension-
contrastive and sample-contrastive up to a normalization of the embeddings.

– We introduce a theoretical framework that unifies dimension-contrastive
methods that scale linearly in the number of views.

– We show that FroSSL combines two techniques to reduce training time:
using more views and improving eigenvalue dynamics. We examine covari-
ance eigenvalue trajectories during training on STL-10 to show that FroSSL
learns useful, high-rank representations more quickly than other dimension-
contrastive methods.

– We evaluate FroSSL on the standard setup of SSL pretraining and linear
probe evaluation on CIFAR-10, CIFAR-100, STL-10, Tiny Imagenet, and
Imagenet-100. We find that FroSSL achieves strong performance, especially
when models are trained for fewer epochs.

2 Background and Notation

Consider a matrix A ∈ Rm×n. Let Aij ∈ R denote the element at the ith row and
jth column of A, and Ai,: ∈ Rm denote the ith column vector representing the ith
row of A, and A:,j the jth column of A. Let σk(A) denote the kth singular value
of A ordered non-increasingly. The entry-wise product (also known as Hadamard
product) is denoted as A⊙B. The Ky Fan p norm of A is defined as [18]:

∥A∥p =

min(m,n)∑
k

σp
k(A)

1/p

, (1)

which is a unitarily invariant norm. For p = 2, we have the Frobenius norm
∥A∥2 = ∥A∥F =

√∑
i

∑
j A

2
ij .

2.1 The Joint Embedding Self-Supervised Learning Problem

The goal of self-supervised learning is to learn useful representations without
external supervision. Many visual joint embedding SSL methods follow a similar
procedure which was first introduced in [4]. An example of this procedure is
depicted in Figure 1. Let X = {xi}Ni=1 be a mini-batch with N samples, V the
number of augmented views, T (·) a function that applies randomly selected aug-
mentations to an image, f a visual encoder network, and g a projector network.

First, each image xi ∈ X is paired with augmented versions of itself, making
the augmented dataset Xaug = {T1(xi), · · · , TV (xi)}Ni=1 = {X1, · · · , XV } With
ideal augmentations, (X1)i,: and (X2)i,: have identical semantic content and
different style content. Note that typically V = 2, but we make no such assump-
tions. For each augmentation, the embedding set is given by Yv = {f((Xv)i,:)}Ni=1
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and projection set Zv = {g((Yv)i,:)}Ni=1. Finally, an SSL objective is computed on
the projections and backpropagated through both networks. The goal of the ob-
jective is to ensure that encoded augmentations for the same image are mapped
close together by the projector, i.e. (Za)i,: and (Zb)i,: are close in some sense of
distance for all a, b = 1, 2, . . . , V . At the same time, projections should capture
the variability among images. Thus the goal of SSL is to train the networks f and
g to extract semantic features that are invariant to any augmentations induced
by T (·). In the following, we take a closer look at choices for the SSL objective.

2.2 The Three Families of Joint Embedding SSL Objectives

Objective functions for joint embedding self-supervised learning can be divided
into three families. The first family consists of sample-contrastive methods [2;
4; 16; 17; 33] which use a contrastive loss to learn a representation that maps
positive samples (augmentation of the same image) close together while pushing
negative samples (different images) apart. These methods avoid collapse at the
expense of making comparisons between positive and negative samples.

The second family consists of asymmetric network methods [3; 5; 14] which
place restrictions on the architecture of the mapping network used, includ-
ing asymmetrical encoders [5; 14], momentum encoders [17], and stop gradi-
ents [5; 15]. While these methods can achieve great results, they are rooted in
implementation details and there is no clear theoretical understanding of how
they avoid collapse [1].

The third, and most recent, family are the dimension-contrastive methods,
which are sometimes called negative-free contrastive [32] or feature decorrela-
tion methods [29]. These methods operate by reducing the redundancy in fea-
ture dimensions. Instead of examining where samples live in feature space, these
methods examine how feature dimensions are being used. Methods in this fam-
ily can avoid the use of negative samples while also not requiring restrictions
in the network architecture to prevent collapse. Barlow Twins objective pushes
the normalized cross-covariance between views towards the identity matrix [36].
VICReg consists of three terms: the invariance term enforces similarity in embed-
dings across views, while the variance/covariance terms regularize the covariance
matrices of each view to prevent collapse [1]. W-MSE whitens and projects em-
beddings to the unit sphere before maximizing cosine similarity between positive
samples [11]. I-VNE maximizes the von Neumann entropy of the embedding co-
variance matrices [20]. Finally, CorInfoMax maximizes the log det entropy of
both views while minimizing mean-squared error [25].

2.3 A Framework for Dimension-Contrastive Methods

Many recent works in dimension-contrastive SSL, whether explicitly or implic-
itly, consist of a combination of two competing objectives: an augmentation
invariance term that pulls different augmentations from the same image close
together, and a variance term that avoids collapse of the mapping by regulating
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Table 1: Taxonomy of dimension-contrastive SSL methods describing how they avoid
informational collapse and achieve augmentation invariance in the Dinv and Dvar frame-
work of Section 2.3.

Method Variance Dvar(Σv∥I) Invariance Dinv(Zv, Zr)

VICReg (Variance) Hinge loss on auto-covariance diagonal

MSE
1
N

∥Zv − Zr∥2F

(Covariance) covariance off-diagonals per view
D∑
k

max
(
0, 1−

√
(Σv)k,k + ϵ

)
+ ν ∥Σv −Σv ⊙ I∥2F

W-MSE Implicit through whitening that

Dvar(Σv∥I) = 0 since Σv = I for all v

CorInfoMax Log Det Divergence: Dlog det(A∥B) = trace(AB−1)−D − log det(AB−1)

Dlog det(Σv + ϵI ∥ I) = trace(Σv + ϵI)−D − log det(Σv + ϵI)

I-VNE von Neumann Relative Entropy: S1(A∥B) = trace(A (lnA− lnB)) Cosine Similarity
S1(Σv∥I) = trace(Σv lnΣv)

FroSSL (ours) 2-Order Petz-Rényi Relative Entropy: S2(A∥B) = log trace(A2B−1) MSE
1
N

∥Zv − Zr∥2FS2(Σv∥I) = ln
(∑N

i=1 σ
2
i

)
= ln ∥Σv∥2F

variance. Below, we unify dimension-contrastive methods into a general frame-
work that is parameterized by choices of two distances. By carefully selecting
these distances, specific dimension-contrastive methods can be recovered.

Let Zv ∈ RN×D be a batch of projections and Σv = 1
N ẐT

v Ẑv the correspond-
ing covariance, where Ẑv are the centered projections. A dimension-contrastive
objective can be written as follows:

min

V−1∑
v=1

V∑
r=v+1

Dinv(Zv, Zr) + γ

V∑
v=1

Dvar(Σv∥I). (2)

The first term of (2) is the invariance term which minimizes the distance
Dinv : RN×D × RN×D 7→ R≥0 between all pairs of augmentations. The second
term of (2) is a variance factor that forces the covariance of each augmentation
to be close to identity according to a dissimilarity Dvar : RD×D×RD×D 7→ R≥0.
For instance, in VICReg [1], Dinv(Zv, Zr) = ∥Zv − Zr∥2F and Dvar(Σv∥I) =
D∑
k

max
(
0, 1−

√
(Σv)k,k + ϵ

)
+ν ∥Σv −Σv ⊙ I∥2F . Similarly, in CorInfoMax [25]

Dinv(Zv, Zr) is the same as VICReg, but Dvar(Σv∥I) can be related to the log det
divergence Dlog det(A∥B) = trace(AB−1)−D−log det(AB−1) setting A = Σv+ϵI
and B to a scaling of identity due to the normalization step in their projector. In
Table 1, we show the dimension-contrastive methods which fit into this frame-
work. We provide derivations in the Supp. Material.

Multiview Invariance Term In (2) the invariance term requires V (V − 1)/2
comparisons which scales quadratically with the number of views. However, if
Dinv(Zv, Zr) = ∥Zv − Zr∥2F , then the invariance term may be simplified to

V−1∑
v=1

V∑
r=v+1

Dinv(Zv, Zr) = V

V∑
v=1

Dinv
(
Zv, Z

)
(3)
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Table 2: Taxonomy of dimension-contrastive SSL methods showing which desirable
criteria they fulfill.

Invariant to
Projection
Rotations

Manipulates
Eigenvalues
Explicitly

Quadratic in
Batch Size and
Dimension

Linear
in Views

Barlow Twins × × ✓ ×
VICReg × × ✓ ✓
W-MSE ✓ × × ✓
CorInfoMax ✓ ✓ × ✓
I-VNE ✓ ✓ × ✓
MMCR ✓ ✓ × ✓
FroSSL (ours) ✓ ✓ ✓ ✓

where Z = 1
V

∑V
i=1 Zi is the average projection across all views. If a method has

a Dinv that can be rewritten this way, we say the method scales linearly with
views. All methods displayed in Table 1 have this property.

3 The FroSSL Objective

To motivate FroSSL, we begin by posing four desirable criteria of dimension-
contrastive methods.

1. Invariant to Projection Rotations We argue that dimension-contrastive
methods should be invariant to rotations in the projections because the ori-
entation of the covariance does not affect the relationships between principal
components. In other words, redundancy in the embedding dimensions is in-
variant to the rotation of the embeddings. Thus the choices of Dvar and Dinv
should be rotationally invariant as well.

2. Manipulates Eigenvalues Explicitly Several works have shown that reg-
ularizing projection covariance eigenvalues in SSL can lead to reduced train-
ing time and improved downstream performance [15; 20; 34]. We provide
empirical support for this in Section 4.1.

3. Scales Quadratically in Batch Size and Dimension The time com-
plexity of the objective function scale at most quadratically with respect to
N and D. This is often in opposition to the prior criteria which typically
requires cubic eigendecomposition.

4. Scales Linearly in Views The time complexity of the objective function
should be linear in the number of views V . This is advantageous because
recent work has shown that using more views can reduce training time and
improve downstream performance [2; 34]. We provide empirical support for
this in Sections 4.2 and 5. Any dimension-contrastive method with Dinv that
satisfies Equation (3) fulfills this criterion.

As shown in Table 2, no prior method meets all four criteria. We provide
proofs in the Supp. Material. To construct a method that fulfills all criteria, we
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modify the I-VNE objective function:

maxLI-VNE =

V∑
v=1

TrΣv lnΣv +

V−1∑
v=1

V∑
r=v+1

ZT
v Zr

∥Zv∥2 ∥Zr∥2
(4)

The invariance term maximizes the cosine similarity between views. The variance
term maximizes the von Neumann entropy of each view covariance matrix. The
only criteria that I-VNE does not fulfill is being subcubic in batch size and
dimension. This is due to the eigendecomposition needed to compute the matrix
logarithm for the entropy. To begin addressing this, we first notice that the von
Neumann entropy is a limit case of matrix-based α-order entropy [19; 26; 28]:

Sα (Σv) =
1

1− α
log [Tr (Σα

v )] =
1

1− α
log

min(N,D)∑
i

λα
i (Σv)

 (5)

Here, we do not require trace(Σv) = 1 as is typically required by α-order entropy.
The von Neumann entropy is equivalent to S1(Σv) in the limit. Another special
case is collision entropy, given by S2(Σv) below:

S2 (Σv) = − log

min(N,D)∑
i=1

λ2
i (Σv)

 = − log(∥Σv∥2F ) = − log
∑
i

∑
j

(Σv)
2
ij (6)

Notice how the left-hand side in the above equation explicitly uses the eigenval-
ues, while the right-hand side only uses matrix elements. This is made possible
by the Frobenius norm, which offers an equivalency between a sum over eigen-
values and a sum over matrix elements. This has immediate impacts on the
loss time complexity by relaxing the O(min(D,N)3) eigendecomposition to the
O(min(D,N)2) Frobenius norm computation. The case of 2-order entropy is the
only matrix-based α-entropy which does not require eigendecomposition. One
potential downside is S2(Σv) does not penalize outlying eigenvalues as heavily
as in S1(Σv). This is akin to the difference between mean-absolute error and
mean-squared error. However, this has no significant impact in our experiments.

The variance term Dvar for our objective will minimize the log Frobenius
norm of normalized embeddings, causing the embeddings to spread out equally
in all directions. Normalizing the embeddings is crucial because otherwise, min-
imizing the Frobenius norm will lead to trivial collapse. For the invariance term
Dinv, we opt to use the mean-squared error between views. Our objective func-
tion FroSSL is given below:

minimize LFroSSL =

V∑
v=1

log(∥Σv∥2F ) + γ
∥∥Zv − Z

∥∥2
F

(7)

Note we simplify the pairwise mean-squared error via Equation (3). Because the
Frobenius norm is invariant to transposition, we can choose to compute either∥∥ZT

v Zv

∥∥2
F

or
∥∥ZvZ

T
v

∥∥
F

depending on if D > N . The former has time complexity
O(ND2) while the latter has complexity O(N2D). For consistency, we always
use the former in our experiments. We provide pseudocode in the Supp. Material.
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3.1 The Role of the Logarithm

The log in Equation (7) ensures that the contributions of the variance term to the
gradient of the objective function become self-regulated (d log f(x)

dx = 1
f(x)

df(x)
dx )

with respect to the invariance term. We later compare the experimental per-
formance of Equation (7) with and without the logarithms, showing that using
logarithms leads to a gain in performance. Prior work has shown that Equation
(7) with no logarithms causes dead neurons in the final encoder layer [20].

3.2 FroSSL is both Sample-contrastive and Dimension-contrastive

It can be shown, up to an embedding normalization, that FroSSL is both dimension-
contrastive and sample-contrastive. First, we provide formal definitions of dimension-
contrastive and sample-contrastive SSL, following Garrido et al . [13].

Definition 1 (Dimension-Contrastive Method). An SSL method is said to
be dimension-contrastive if it minimizes the non-contrastive criterion Lnc(Z) =∥∥ZTZ − diag(ZTZ)

∥∥2
F
, where Z ∈ RNxD is a matrix of embeddings as defined

above. This may be interpreted as penalizing the off-diagonal terms of the em-
bedding covariance.

Definition 2 (Sample-Contrastive Method). An SSL method is said to be
sample-contrastive if it minimizes the contrastive criterion Lc(Z) =∥∥ZZT − diag(ZZT )

∥∥2
F
. This may be interpreted as penalizing the similarity be-

tween pairs of different images.

Next, we use the duality of the Frobenius norm, given by
∥∥ZTZ

∥∥
F
=

∥∥ZZT
∥∥
F
,

to show that FroSSL satisfies the qualifying criteria of both dimension-contrastive
and sample-contrastive methods.

Proposition 1. If every embedding dimension is normalized to have equal vari-
ance, then FroSSL is a dimension-contrastive method. See Supp. Material. for
the proof.

Proposition 2. If every embedding is normalized to have equal norm, then
FroSSL is a sample-contrastive method. See Supp. Material. for the proof.

Proposition 3. If the embedding matrices are doubly stochastic, then FroSSL
is simultaneously dimension-contrastive and sample-contrastive.

Proposition 3 allows for interpreting FroSSL as either a sample-contrastive or
dimension-contrastive method, up to a normalization of the data embeddings.
The choice of normalization strategy is not important to the performance of
an SSL method [13]. Unless otherwise specified, we only normalize the variance
and not the embeddings. These same proof techniques can be used to show that
TiCo, MMCR, I-VNE, and CorInfoMax also belong to both families [20; 25;
34; 37]. Additionally, variants of the dimension-contrastive VICReg have been



FroSSL 9

proposed [13] that allow it to be rewritten as the sample-contrastive SimCLR.
However, VICReg cannot be rewritten in such a way due to the hinge loss.

While Proposition 3 is interesting theoretically, it also offers empirical ben-
efits to FroSSL. We examine overall wall-training time to reach competitive
accuracies (4.3), robustness to augmentations (5.1), and performance on little
pretraining data (5.2). In all of these experiments, sample-contrastive methods
outperform dimension-contrastive methods. FroSSL shares the advantages ob-
served empirically in sample-contrastive methods.

4 On Efficiency in Self-Supervised Learning

It is well-known that traditional SSL algorithms need hundreds or thousands of
epochs to reach competitive accuracies. To compare the efficiency of different
SSL algorithms, we can borrow theoretical and practical tools from the broader
field of algorithmic complexity. In the context of machine learning, there are two
measurements of particular interest to practitioners: wall-time needed to reach a
given accuracy and VRAM space used. The former can be decomposed into the
atomic quantities of average wall-time per minibatch and the number of epochs
needed to reach a given accuracy. To emphasize why this decomposition matters,
consider a scenario where wall-time per minibatch differs between two methods
but overall wall-time does not. In such a scenario, using the method with the
slower minibatch wall-time is advantageous for using fewer disk reads and less
distributed network traffic. This is not obvious without observing the atomic
quantities. Note we are careful to specify “epochs to reach a given accuracy”
rather than “epochs to convergence”. One reason for this is that classical exper-
iments in SSL train for a fixed number of epochs rather than until convergence.
Another reason is algorithms that more quickly reach a target performance, such
as FroSSL or I-VNE, do not necessarily converge in fewer epochs.

The design of an SSL algorithm is a balancing act between minibatch time,
space, and number of epochs. While conversations involving minibatch time and
space have been rarely discussed in the SSL literature, discussion about the
number of epochs has seen renewed interest [15; 27; 31]. However, if SSL algo-
rithm design is indeed a balancing act of the three quantities above, then space
and minibatch time deserve discussion too. Methods that boast reductions to
one quantity may come with significant penalties to a different quantity. For
example, dimension-contrastive methods use less space in practice than sample-
contrastive methods, which prefer large minibatch sizes, or asymmetric methods
like BYOL, which need an additional prediction network. However, the improved
space efficiency comes at the cost of requiring a higher number of epochs [27]. In
Sections 4.1 and 4.2, we discuss the advantages and drawbacks of two approaches
to reducing the number of epochs. In Section 4.3, we compare a variety of SSL
algorithms and visualize their time, space, and epoch tradeoffs.
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Fig. 2: The choice of variance term, Dvar(Σv∥I), has a significant impact on
training dynamics. Each subplot visualizes the trajectories of the top 20 eigenvalues
of the embedding covariance matrix Σ1 when trained with dimension-contrastive meth-
ods. These trajectories show how quickly Σv converges to γI, which has eigenvalues
equal to γ

D
. VICReg, Barlow Twins, and CorInfoMax converge slowly. FroSSL and I-

VNE have similar training dynamics, but FroSSL has significantly lower computational
complexity because it avoids explicitly computing the eigendecomposition.

4.1 Reducing the Number of Epochs with Eigenvalue Dynamics

Recent work has examined the training dynamics of SSL models [27]. In partic-
ular, they find that the eigenvalues of the covariance exhibit stepwise behavior,
meaning that one eigendirection is learned at a time. This is readily seen in Fig-
ure 2 for VICReg and Barlow Twins. This phenomenon contributes to slowness
in SSL optimization with the smallest eigendirections taking the longest to be
learned. Other work shows that high-rank representations lead to better down-
stream performances [12]. It directly follows that if an SSL method requires a
high number of epochs to learn high-rank representations, then it also needs a
high number of epochs to learn useful representations.

We hypothesize that by carefully choosing the variance term Dvar(Σv∥I) to
reduce stepwise eigenvalue dynamics, useful representations can be learned more
quickly. Indeed, this behavior has already been observed in several SSL objectives
already. CorInfoMax optimizes the log-determinant of each covariance Σv, which
is defined as the log of the product of the Σv eigenvalues [25]. IsoLoss uses
Σv eigenvalues as learning rate multipliers to equalize the convergence rate of
different eigenmodes [15]. MMCR optimizes the nuclear norm of the average view
embedding, which is defined as the sum of the singular value magnitudes [34].
I-VNE optimizes the von Neumann entropy of Σv, which is equal to the Shannon
entropy of the Σv eigenvalues [20].
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It is straightforward to show that FroSSL also directly influences the co-
variance eigenvalue dynamics. However, FroSSL is unique from prior methods
because it does so while avoiding explicit eigendecomposition. This can be seen
from Equation 6. Additionally, using the Frobenius norm eliminates numerical
instabilities typically associated with eigendecomposition [9].

To highlight the existence and remedy of stepwise phenomena in practi-
cal scenarios, we create an experiment similar to the one used by Simon et
al . [27]. In Figure 2, we plot the trajectories of the top 20 eigenvalues of Σ1

when trained with different dimension-contrastive objectives. For all SSL objec-
tives, a ResNet18 was trained for 5 epochs on STL-10 using SGD with lr = 0.01
and a batch size of 256. Further details are given in the Supp. Material.

The eigenvalues trajectories show how quickly Σv is approaching γI, which
has eigenvalues equal to γ

D . We say that an objective is saturated once the step-
wise learning phase is ended. This is marked as the step where λ20 has increased
from zero and started decreasing. It is clear to see that SSL objectives that di-
rectly influence eigenvalues, namely CorInfoMax, I-VNE, and FroSSL, saturate
much quicker than the others. Interestingly, the condition number for CorInfo-
Max, computed as λ1

λ20
, is much larger than any other tested method. We hy-

pothesize this is due to the choice of the ϵ hyperparameter for the regularization
term when computing the determinant as det(Σ1 + ϵI).

4.2 Reducing the Number of Epochs by Using More Views

Multiview with 3 or More Views In contrastive learning, using more views
has been shown to have significant impacts on representation quality and down-
stream performance [30]. In SSL, using more augmentations for each image has
the effect of averaging out noise from the mean embedding, which acts as a
target for many SSL objectives as shown in Equation (3). This differs from in-
creasing the batch size, which would instead average out noise across samples
and not across targets. While using more views is promising, it has not seen
widespread adoption in self-supervised learning. This is in part due to many
sample-contrastive methods being quadratic in the number of views. However,
this problem is circumvented for the dimension-contrastive methods shown in
Table 1, which are instead linear in the number of views. One such method,
W-MSE, has shown performance improvements when the number of views is
increased from 2 to 4 [11]. Interestingly, MMCR is constant in the number of
views because it operates only on the mean embedding [34].

Multi-Patch and Multi-Crop Methods An approach in a different vein is
to extract and augment image patches to serve as views, rather than using full
images. EMP-SSL has shown that this drastically reduces the number of epochs
and overall wall-time needed to reach competitive accuracies by utilizing a bag-
of-features model that embeds hundreds of small augmented patches per image
[6; 31]. However, EMP-SSL comes at the cost of major penalities to time-per-
minibatch and space in both training time and inference time.
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Table 3: Comparison of the time/space/epoch tradeoffs for SSL algorithms trained on
STL-10. FroSSL with 8 views achieves 80% top-1 accuracy in the least wall-time.

SimCLR MocoV2 BYOL VICReg Barlow CorInfoMax MMCR FroSSL (ours)
Num. Views 2 2 2 2 2 2 2 4 8 2 4 8

Loss Time Complexity O(V 2N2) O(V D2) O(V 2D2) O(V D3) O(min(D,N)3) O(V min(D,N)2)

VRAM Space (GB) 1.6 2.8 2.0 1.6 1.6 1.7 1.7 2.9 5.3 1.7 2.9 5.3
Minibatch Wall-time (ms) 60 79 76 65 64 97 71 108 187 64 105 187

Number of Epochs to 80% Acc 347 180 187 360 370 405 380 211 63 290 144 55
Wall-time to 80% Acc (hours) 2.4 1.6 1.6 2.7 2.7 4.5 3.1 2.6 1.3 2.1 1.7 1.2

Table 4: Top-1 accuracies on STL-10 using an online linear classifier during training
for specific numbers of epochs (left) and specific elapsed times (right).

Epochs
Method 3 10 30 50 100

SimCLR 40.7 44.8 61.5 66.2 70.1
MoCo v2 24.6 45.0 63.8 69.4 75.2
BYOL 28.8 32.7 59.6 64.7 70.6
VICReg 43.6 51.1 61.2 67.5 71.1
Barlow Twins 32.1 46.6 62.0 62.6 69.0
CorInfoMax 39.0 49.1 58.0 62.5 66.2
MMCR (2 views) 39.6 53.3 62.8 63.3 67.0
MMCR (4 views) 46.0 61.5 70.2 71.5 75.7
MMCR (8 views) 51.1 64.7 72.9 77.2 79.4
FroSSL (2 Views) 44.8 56.9 64.8 67.1 72.0
FroSSL (4 Views) 49.3 60.7 70.3 67.1 76.9
FroSSL (8 Views) 47.6 65.5 74.5 78.4 81.8

Training Wall-Time (min.)
Method 10 30 60

SimCLR 61.5 68.8 73.9
MoCo v2 57.4 70.0 76.2
BYOL 50.2 65.3 75.0
VICReg 63.4 70.3 72.9
Barlow Twins 55.5 66.1 68.0
CorInfoMax 56.1 64.9 65.6
MMCR (2 views) 54.7 68.4 70.9
MMCR (4 views) 69.8 74.7 76.6
MMCR (8 views) 64.7 73.5 78.0
FroSSL (2 Views) 63.4 69.7 74.9
FroSSL (4 Views) 68.5 73.7 76.3
FroSSL (8 Views) 58.6 74.1 79.0

As an alternative to using full-sized images or tiny patches for each view,
multi-crop methods strike a balance [2]. A certain number of views are full-sized
images while the remaining views are smaller crops. A typical setup for ImageNet
is using two 224× 224 views and six 96× 96 views. These approaches differ from
our experiments which use all full-sized views with FroSSL. However, we expect
that FroSSL should work well as an objective function for these paradigms too.

4.3 Exploring Time, Space, and Epoch Tradeoffs

We now compare the efficiency of different SSL algorithms. We train a ResNet-18
for 500 epochs on STL-10 and measure the number of epochs needed to reach a
top-1 accuracy of 80%. This threshold of 80% was chosen because all methods
achieve that accuracy within 500 epochs. We used N = 256 and D = 1024
for all methods. Because these models were trained on a distributed cluster, it
is important to compensate for different compute when measuring minibatch
wall-time. In particular, we measure minibatch time by averaging over 2000
iterations of training on one NVIDIA A5000 GPU. We measure VRAM space as
the maximum space requested by the training script. We calculate wall-time to
80% accuracy by multiplying minibatch time, epochs, and iterations per epoch.

In Table 3 we show the resources needed for each SSL objective. There are
several observations to glean from this table. First, increasing the number of
views reduces epochs and overall wall-time, even though space and minibatch
time become larger. FroSSL with 8 views reaches 80% top-1 accuracy faster than
any other tested method. Second, asymmetric methods require the least overall
wall-time for any method using 2 views, at the cost of space. We hypothesize this
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Table 5: Comparison of SSL methods on small datasets. All CorInfoMax and MMCR
results are from our implementation. All Tiny ImageNet and STL-10 results are from
our implementation. CIFAR-10 and CIFAR-100 results are reported from [8; 11]. IN-
100 baseline results are from [8]. We observed negligible improvements from using more
views for FroSSL on the CIFAR datasets; we used the 2-view CIFAR accuracies to
compute 4/8 view averages. An asterisk (*) denotes Tiny ImageNet results where weak
augmentations outperformed strong ones. Results within 0.5% of best are bolded.

Method CIFAR-10 CIFAR-100 STL-10 Tiny-IN IN-100 Average
Sample-Contrastive

SimCLR 91.8 65.8 85.9 41.9 77.6 72.6
SwAV 89.2 64.9 82.6 41.2 74.3 70.5
MoCo v2 92.9 69.9 83.2 41.9 79.3 73.4

Asymmetric Network
SimSiam 90.5 66.0 88.5 45.6* 78.7 73.9
BYOL 92.6 70.5 88.7 40.1 80.3 74.4
DINO 89.5 66.8 78.9 34.9 78.9 69.8

Dimension-Contrastive
VICReg 92.1 68.5 85.9 37.5 79.4 65.8
Barlow Twins 92.1 70.9 85.0 45.3 80.2 74.7
W-MSE 2 91.6 66.1 72.4 28.8* 69.0 65.6
CorInfoMax 92.6 69.7 83.1 43.9 74.7 72.8
I-VNE 89.7 65.7 87.4 45.2 77.6 73.1
MMCR (2 views) 88.6 65.8 84.3 41.2 76.7 71.3
MMCR (4 views) 89.6 67.3 88.2 42.8 78.8 73.3
MMCR (8 views) 89.3 68.3 90.3 43.2 80.3 74.2
FroSSL (2 views) [no log] 88.9 62.3 82.4 36.4 78.3 69.7
FroSSL (2 views) 92.8 70.6 87.3 44.2 78.2 74.6
FroSSL (4 views) - - 90.0 45.3 79.4 75.6
FroSSL (8 views) - - 90.9 45.3 79.8 75.9

is due to enhanced training stability from momentum encoders. Third, doubling
the number of views does not necessarily double the minibatch wall-time. This
is because some parts of the training script, such as data loading and logging,
do not get slower as the number of views increases. In Table 4, we show top-1
accuracies over epochs and over time. In both scenarios, FroSSL with 8 views
has the highest accuracy after training is finished.

5 Experimental Results

In this section, we use a linear probe to evaluate learned representations on
CIFAR-10 [22], CIFAR-100, STL-10 [7], Tiny ImageNet [23], and ImageNet-
100 [30]. Our implementation is based on the solo-learn SSL framework [8].

In Table 5, we show linear probe evaluation results on these datasets. It is
readily seen that FroSSL learns competitive representations in comparison to
other SSL methods. The implementation details can be summarized as:

– Optimizer The backbone uses LARS optimizer [35] with an initial learning
rate of 0.3, weight decay of 1e-6, and a warmup cosine learning rate scheduler.
The linear probe uses the SGD optimizer [21] with an initial learning rate
of 0.3, no weight decay, and a step learning rate scheduler with decreases at
60 and 80 epochs.

– Epochs For CIFAR-10 and CIFAR-100, we pretrain the backbone for 1000
epochs. For STL-10, we pretrain for 500 epochs. For Tiny Imagenet, we
pretrain for 800 epochs. For Imagenet-100, we pretrain for 800 epochs. All
linear probes were trained for 100 epochs.
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Table 6: The top-1% accuracies after
training on Tiny-Imagenet using weak
or strong augmentations.

Method Weak Strong ∆%

SimCLR 39.5 41.9 2.4
SwAV 39.9 41.2 1.5
MoCo v2 40.9 41.9 1.0
SimSiam 45.6 39.7 -5.9
BYOL 39.4 40.1 0.7
DINO 32.2 34.9 2.7
VICReg 18.1 37.5 19.6
Barlow Twins 36.8 45.3 8.5
CorInfoMax 33.1 43.9 10.8
MMCR (2 views) 24.2 41.2 17.0
FroSSL (2 views) 39.4 44.2 4.8

Table 7: Accuracies after pretraining
on ImageNet-1k for 100 epochs with
only 10% of data.

Top-1 Top-5
SimCLR 31.1 56.6
BYOL 12.7 29.1
SimSiam 22.7 46.3
Barlow Twins 23.6 46.9
FroSSL (2 Views) 33.4 59.1
FroSSL (8 Views) 38.2 64.1

– Hyperparameters A batch size of N=256 is used for all datasets, except
for Tiny ImageNet which used N=512. For FroSSL, we used γ = 1.4 for 2
views and γ = 2 for 4 and 8 views. We used an MLP with output dimension
D = 1024 for FroSSL. Details about augmentations and method-specific
hyperparameters are given in the Supp. Material.

5.1 Robustness to Augmentations

We trained models on Tiny ImageNet using both weak and strong augmenta-
tions. Weak augmentations had Gaussian blur probabilities (0.5, 0.5) and solar-
ization probabilities (0, 0) for each view. Strong augmentations had Gaussian
blur probabilities (1.0, 0.1) and solarization probabilities (0.2, 0). As shown in
Table 6, FroSSL is more robust to changes in augmentations than any other
dimension-contrastive method.

5.2 Performance In Low Data Regime

We trained models on ImageNet-1K [10] using only 10% of the data and evalu-
ated them using the standard linear probe. Note that limited data was used in
both pretaining and evaluation. As shown in Table 7, FroSSL achieves a better
downstream performance on limited data than any other tested method.

6 Conclusion

We introduced FroSSL, a self-supervised learning method that can be seen as
both sample- and dimension-contrastive. We showed that FroSSL enjoys the
simplicity of dimension-contrastive methods while achieving the empirical advan-
tages of sample-contrastive methods. In particular, we discovered that FroSSL
can achieve substantially stronger performance than alternative SSL methods
when trained with less overall wall-time. To better understand why this is
happening, we presented empirical results based on eigenvalue trajectories. We
demonstrated the effectiveness of FroSSL through extensive experiments on stan-
dard datasets.
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