Learning Progressive Joint Propagation for Human Motion Prediction

Yujun Cai, Lin Huang, Yiwei Wang, Tat-Jen Cham, Jianfei Cai, Junsong Yuan, Jun Liu, Xu Yang, Yiheng Zhu, Xiaohui Shen, Ding Liu, Jing Liu, Nadia Magnenat Thalmann ;


Despite the great progress in human motion prediction, it remains a challenging task due to the complicated structural dynamics of human behaviors. In this paper, we address this problem in three aspects. First, to capture the long-range spatial correlations and temporal dependencies, we apply a transformer-based architecture with the global attention mechanism. Specifically, we feed the network with the sequential joints encoded with the temporal information for spatial and temporal explorations. Second, to further exploit the inherent kinematic chains for better 3D structures, we apply a progressive-decoding strategy, which performs in a central-to-peripheral extension according to the structural connectivity. Last, in order to incorporate a general motion space for high-quality prediction, we build a memory-based dictionary, which aims to preserve the global motion patterns in training data to guide the predictions. We evaluate the proposed method on two challenging benchmark datasets (Human3.6M and CMU-Mocap). Experimental results show our superior performance compared with the state-of-the-art approaches."

Related Material