Object as Hotspots: An Anchor-Free 3D Object Detection Approach via Firing of Hotspots

Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, Alan Yuille ;


Accurate 3D object detection in LiDAR based point clouds suffers from the challenges of data sparsity and irregularities. Existing methods strive to organize the points regularly, e.g. voxelize, pass them through a designed 2D/3D neural network, and then define object-level anchors that predict offsets of 3D bounding boxes using collective evidences from all the points on the objects of interest. Contrary to the state-of-the-art anchor-based methods, based on the very nature of data sparsity, we observe that even points on an individual object part are informative about semantic information of the object. We thus argue in this paper for an approach opposite to existing methods using object-level anchors. Inspired by compositional models, which represent an object as parts and their spatial relations, we propose to represent an object as composition of its interior non-empty voxels, termed hotspots, and the spatial relations of hotspots. This gives rise to the representation of Object as Hotspots (OHS). Based on OHS, we further propose an anchor-free detection head with a novel ground truth assignment strategy that deals with inter-object point-sparsity imbalance to prevent the network from biasing towards objects with more points. Experimental results show that our proposed method works remarkably well on objects with a small number of points. Notably, our approach ranked 1st on KITTI 3D Detection Benchmark for cyclist and pedestrian detection, and achieved state-of-the-art performance on NuScenes 3D Detection Benchmark."

Related Material