Large Scale Holistic Video Understanding

Ali Diba, Mohsen Fayyaz, Vivek Sharma, Manohar Paluri, J├╝rgen Gall, Rainer Stiefelhagen, Luc Van Gool ;

Abstract


Video recognition has been advanced in recent years by benchmarks with rich annotations. However, research is still mainly limited to human action or sports recognition - focusing on a highly specific video understanding task and thus leaving a significant gap towards describing the overall content of a video. We fill this gap by presenting a large-scale ``Holistic Video Understanding Dataset""~(HVU). HVU is organized hierarchically in a semantic taxonomy that focuses on multi-label and multi-task video understanding as a comprehensive problem that encompasses the recognition of multiple semantic aspects in the dynamic scene. HVU contains approx.~572k videos in total with 9 million annotations for training, validation, and test set spanning over 3142 labels. HVU encompasses semantic aspects defined on categories of scenes, objects, actions, events, attributes, and concepts which naturally capture the real-world scenarios.

We demonstrate the generalisation capability of HVU on three challenging tasks: 1.) Video classification, 2.) Video captioning and 3.) Video clustering tasks. In particular for video classification, we introduce a new spatio-temporal deep neural network architecture called ``Holistic Appearance and Temporal Network""~(HATNet) that builds on fusing 2D and 3D architectures into one by combining intermediate representations of appearance and temporal cues. HATNet focuses on the multi-label and multi-task learning problem and is trained in an end-to-end manner. %The experiments show that HATNet trained on HVU outperforms current state-of-the-art methods on challenging human action datasets: HMDB51, UCF101, and Kinetics. The dataset and codes will be made publicly available. Via our experiments, we validate the idea that holistic representation learning is complementary, and can play a key role in enabling many real-world applications."

Related Material


[pdf]