SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang ;


"Despite the rapid development of Neural Radiance Field (NeRF), the necessity of dense covers largely prohibits its wider applications. While several recent works have attempted to address this issue, they either operate with sparse views (yet still, a few of them) or on simple objects/scenes. In this work, we consider a more ambitious task: training neural radiance field, over realistically complex visual scenes, by “looking only once”, i.e., using only a single view. To attain this goal, we present a Single View NeRF (SinNeRF) framework consisting of thoughtfully designed semantic and geometry regularizations. Specifically, SinNeRF constructs a semi-supervised learning process, where we introduce and propagate geometry pseudo labels and semantic pseudo labels to guide the progressive training process. Extensive experiments are conducted on complex scene benchmarks, including NeRF synthetic dataset, Local Light Field Fusion dataset, and DTU dataset. We show that even without pre-training on multi-view datasets, SinNeRF can yield photo-realistic novel-view synthesis results. Under the single image setting, SinNeRF significantly outperforms the current state-of-the-art NeRF baselines in all cases. Project page:"

Related Material

[pdf] [supplementary material] [DOI]