MTFormer: Multi-task Learning via Transformer and Cross-Task Reasoning

Xiaogang Xu, Hengshuang Zhao, Vibhav Vineet, Ser-Nam Lim, Antonio Torralba ;

Abstract


"In this paper, we explore the advantages of utilizing transformer structures for addressing multi-task learning (MTL). Specifically, we demonstrate that models with transformer structures are more appropriate for MTL than convolutional neural networks (CNNs), and we propose a novel transformer-based architecture named MTFormer for MTL. In the framework, multiple tasks share the same transformer encoder and transformer decoder, and lightweight branches are introduced to harvest task-specific outputs, which increases the MTL performance and reduces the time-space complexity. Furthermore, information from different task domains can benefit each other, and we conduct cross-task reasoning. We propose a cross-task attention mechanism for further boosting the MTL results. The cross-task attention mechanism brings little parameters and computations while introducing extra performance improvements. Besides, we design a self-supervised cross-task contrastive learning algorithm for further boosting the MTL performance. Extensive experiments are conducted on two multi-task learning datasets, on which MTFormer achieves state-of-the-art results with limited network parameters and computations. It also demonstrates significant superiorities for few-shot learning and zero-shot learning."

Related Material


[pdf] [DOI]