C3P: Cross-Domain Pose Prior Propagation for Weakly Supervised 3D Human Pose Estimation

Cunlin Wu, Yang Xiao, Boshen Zhang, Mingyang Zhang, Zhiguo Cao, Joey Tianyi Zhou ;


"This paper first proposes and solves weakly supervised 3D human pose estimation (HPE) problem in point cloud, via propagating the pose prior within unlabelled RGB-point cloud sequence to 3D domain. Our approach termed C3P does not require any labor-consuming 3D keypoint annotation for training. To this end, we propose to transfer 2D HPE annotation information within the existing large-scale RGB datasets (e.g., MS COCO) to 3D task, using unlabelled RGB-point cloud sequence easy to acquire for linking 2D and 3D domains. The self-supervised 3D HPE clues within point cloud sequence are also exploited, concerning spatial-temporal constraints on human body symmetry, skeleton length and joints’ motion. And, a refined point set network structure for weakly supervised 3D HPE is proposed in encoder-decoder manner. The experiments on CMU Panoptic and ITOP datasets demonstrate that, our method can achieve the comparable results to the 3D fully supervised state-of-the-art counterparts. When large-scale unlabelled data (e.g., NTU RGB+D 60) is used, our approach can even outperform them under the more challenging cross-setup test setting. The source code is released at ""https://github.com/wucunlin/C3P"" for research use only."

Related Material

[pdf] [supplementary material] [DOI]