W2N: Switching from Weak Supervision to Noisy Supervision for Object Detection

Zitong Huang, Yiping Bao, Bowen Dong, Erjin Zhou, Wangmeng Zuo ;

Abstract


"Weakly-supervised object detection (WSOD) aims to train an object detector only requiring the image-level annotations. Recently, some works have managed to select the accurate boxes generated from a well-trained WSOD network to supervise a semi-supervised detection framework for better performance. However, these approaches simply divide the training set into labeled and unlabeled sets according to the image-level criteria, such that sufficient mislabeled or wrongly localized box predictions are chosen as pseudo ground-truths, resulting in a sub-optimal solution of detection performance. To overcome this issue, we propose a novel WSOD framework with a new paradigm that switches from weak supervision to noisy supervision (W2N).Generally, with given pseudo ground-truths generated from the well-trained WSOD network, we propose a two-module iterative training algorithm to refine pseudo labels and supervise better object detector progressively. In the localization adaptation module, we propose a regularization loss to reduce the proportion of discriminative parts in original pseudo ground-truths, obtaining better pseudo ground-truths for further training. In the semi-supervised module, we propose a two tasks instance-level split method to select high-quality labels for training a semi-supervised detector. Experimental results on different benchmarks verify the effectiveness of W2N, and our W2N outperforms all existing pure WSOD methods and transfer learning methods."

Related Material


[pdf] [supplementary material] [DOI]