Seeing through a Black Box: Toward High-Quality Terahertz Imaging via Subspace-and-Attention Guided Restoration

Weng-Tai Su, Yi-Chun Hung, Po-Jen Yu, Shang-Hua Yang, Chia-Wen Lin ;


"Terahertz (THz) imaging has recently attracted significant attention thanks to its non-invasive, non-destructive, non-ionizing, material-classification, and ultra-fast nature for object exploration and inspection. However, its strong water absorption nature and low noise tolerance lead to undesired blurs and distortions of reconstructed THz images. The performances of existing restoration methods are highly constrained by the diffraction-limited THz signals. To address the problem, we propose a novel Subspace-and-Attention-guided Restoration Network (SARNet) that fuses multi-spectral features of a THz image for effective restoration. To this end, SARNet uses multi-scale branches to extract spatio-spectral features of amplitude and phase which are then fused via shared subspace projection and attention guidance. Here, we experimentally construct a THz time-domain spectroscopy system covering a broad frequency range from 0.1 THz to 4 THz for building up temporal/spectral/spatial/phase/material THz database of hidden 3D objects. Complementary to a quantitative evaluation, we demonstrate the effectiveness of SARNet on 3D THz tomographic reconstruction applications."

Related Material

[pdf] [supplementary material] [DOI]