Unsupervised High-Fidelity Facial Texture Generation and Reconstruction

Ron Slossberg, Ibrahim Jubran, Ron Kimmel ;


"Many methods have been proposed over the years to tackle the task of facial 3D geometry and texture recovery from a single image. Such methods often fail to provide high-fidelity texture without relying on 3D facial scans during training. In contrast, the complementary task of 3D facial generation has not received as much attention. As opposed to the 2D texture domain, where GANs have proven to produce highly realistic facial images, the more challenging 3D domain has not yet caught up to the same levels of realism and diversity. In this paper, we propose a novel unified pipeline for both tasks, generation of texture with coupled geometry, and reconstruction of high-fidelity texture. Our texture model is learned, in an unsupervised fashion, from natural images as opposed to scanned textures. To our knowledge, this is the first such unified framework independent of scanned textures. Our novel training pipeline incorporates a pre-trained 2D facial generator coupled with a deep feature manipulation methodology. By applying our two-step geometry fitting process, we seamlessly integrate our modeled textures into synthetically generated background images forming a realistic composition of our textured model with background, hair, teeth, and body. This enables us to apply transfer learning from the 2D image domain, thus leveraging the high-quality results obtained in this domain. We provide a comprehensive study on several recent methods comparing our model in generation and reconstruction tasks. As the extensive qualitative, as well as quantitative analysis, demonstrate, we achieve state-of-the-art results for both tasks."

Related Material

[pdf] [supplementary material] [DOI]