Static and Dynamic Concepts for Self-Supervised Video Representation Learning

Rui Qian, Shuangrui Ding, Xian Liu, Dahua Lin ;


"In this paper, we propose a novel learning scheme for self-supervised video representation learning. Motivated by how humans understand videos, we propose to first learn general visual concepts then attend to discriminative local areas for video understanding. Specifically, we utilize static frame and frame difference to help decouple static and dynamic concepts, and respectively align the concept distributions in latent space. We add diversity and fidelity regularizations to guarantee that we learn a compact set of meaningful concepts. Then we employ a cross-attention mechanism to aggregate detailed local features of different concepts, and filter out redundant concepts with low activations to perform local concept contrast. Extensive experiments demonstrate that our method distills meaningful static and dynamic concepts to guide video understanding, and obtains state-of-the-art results on UCF-101, HMDB-51, and Diving-48."

Related Material

[pdf] [supplementary material] [DOI]