TACS: Taxonomy Adaptive Cross-Domain Semantic Segmentation

Rui Gong, Martin Danelljan, Dengxin Dai, Danda Pani Paudel, Ajad Chhatkuli, Fisher Yu, Luc Van Gool ;


"Traditional domain adaptive semantic segmentation addresses the task of adapting a model to a novel target domain under limited or no additional supervision. While tackling the input domain gap, the standard domain adaptation settings assume no domain change in the output space. In semantic prediction tasks, different datasets are often labeled according to different semantic taxonomies. In many real-world settings, the target domain task requires a different taxonomy than the one imposed by the source domain. We therefore introduce the more general taxonomy adaptive cross-domain semantic segmentation (TACS) problem, allowing for inconsistent taxonomies between the two domains. We further propose an approach that jointly addresses the image-level and label-level domain adaptation. On the label-level, we employ a bilateral mixed sampling strategy to augment the target domain, and a relabelling method to unify and align the label spaces. We address the image-level domain gap by proposing an uncertainty-rectified contrastive learning method, leading to more domain-invariant and class-discriminative features. We extensively evaluate the effectiveness of our framework under different TACS settings: open taxonomy, coarse-to-fine taxonomy, and implicitly-overlapping taxonomy. Our approach outperforms the previous state-of-the-art by a large margin, while being capable of adapting to target taxonomies. Our implementation is publicly available at https://github.com/ETHRuiGong/TADA."

Related Material

[pdf] [supplementary material] [DOI]